Frank Smets and Rafael Wouters
“Monetary Policy in an Estimated SDGE Model of the Euro Area”
Discussion by Lars E.O. Svensson

Copyright 2002 by Lars E.O. Svensson. This document may be reproduced for educational or research purposes, as long as the copies contain this notice and are retained for personal use or distributed free.

- The Eurosystem’s 1st pillar (page 6)
 Additively separable utility
 \[U_t^r = u(C_t^r - H_t) - v(l_t^r) + h(Q_t^r / P_t) \] (2)

 Demand for real balances
 \[\frac{h'(Q_t^r)}{u'(C_t^r - H_t)} = \frac{i_t}{1 + i_t} \] (8)

 No role for money in the transmission mechanism of monetary policy/predicting inflation (\(Q\) reused for real value of capital)

 Even without additive separability, insignificant effect (McCallum, Nelson, Woodford,...)

- Indexation and the natural-rate hypothesis
 Non-adjusted wages: Partial indexation to lagged inflation, \(\gamma^w\)
 \[\hat{W}_t^r - \hat{W}_{t-1}^r = \gamma^w \hat{\pi}_{t-1} \] (9)

 Better: Partial indexation relative to deviation of lagged inflation from average inflation
 \[\hat{W}_t^r - \hat{W}_{t-1}^r = \gamma^w (\hat{\pi}_{t-1} - E[\hat{\pi}_t]) \]

 Real-wage equation
 \[
 \hat{w}_t = \frac{\beta}{1 + \beta} \hat{w}_{t+1|t} + \frac{1}{1 + \beta} \hat{w}_{t-1|t} + \frac{\beta}{1 + \beta} (\hat{\pi}_{t+1|t} - E[\pi_t]) \\
 - \frac{1 + \beta \gamma^w}{1 + \beta} (\hat{\pi}_t - E[\pi_t]) + \frac{\gamma^w}{1 + \beta} (\hat{\pi}_{t-1} - E[\pi_t]) \\
 - \ldots \] (36)

 \(E[\hat{w}_t]\) independent of \(E[\pi_t]\)
Non-adjusted prices: Partial indexation to lagged inflation, γ^p
Better: Partial indexation to deviation of lagged inflation from average inflation
$$\hat{\pi}_t - E[\pi_t] = \frac{\beta}{1 + \beta \gamma^p}(\hat{\pi}_{t+1}|t - E[\pi_t]) + \frac{\gamma^p}{1 + \beta \gamma^p}(\hat{\pi}_{t-1} - E[\pi_t]) + ...$$

Fulfill natural-rate hypothesis: $E[\hat{Y}_t]$ independent of $E[\pi_t]$
Important for welfare

$$\hat{R}_t = \ln(1 + i_t) \approx i_t$$
$$\hat{R}_t = \rho \hat{R}_{t-1} + (1 - \rho) \left[\tilde{\pi}_t + r_\pi(\tilde{\pi}_{t-1} - \tilde{\pi}_t) + r_\pi e(\tilde{\pi}_{t+1}|t - \tilde{\pi}_t) + r_\pi g(\tilde{Y}_t - \tilde{Y}_{t-1}) \right] + \epsilon_t^R$$ (39)

- Mechanical, arbitrary, depend on other variables?
- Simultaneity, $\tilde{\pi}_t, \tilde{\pi}_{t+1}|t, \tilde{Y}_t$ jump variables, not operational
- Instrument depend on predetermined variables
- More realistic: $\tilde{\pi}_t, \tilde{Y}_t$ predetermined
- Microfoundations!

* Optimizing welfare not operational
 - Simple loss function: For example, flexible inflation targeting
 $$E_t \sum_{s=t}^{\infty} \delta^{s-t} L_s$$
 $$L_s = \frac{1}{2}[(\hat{\pi}_t - \bar{\pi}_t)^2 + \lambda x^2_t]$$
 $$x_t \equiv \hat{Y}_t - \hat{Y}_t^n$$ output gap
 - Compare with welfare
 - Find optimal λ and definition of potential output, \hat{Y}_t^n

* Exploit linear-quadratic setup
 - Equilibrium under discretion, commitment,
 - Compare commitment, /discretion, welfare/simple loss function, welfare loss
 - Optimal simple loss function under discretion and commitment (λ, \hat{Y}_t^n)