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I. An empirical forward-looking model

A. Optimal policy under commitment with the deviation being an arbitrary sto-

chastic process

Let the model equations for t ≥ 0 be (2.1). A common special case is when the matrix C = I, but

in general C need not be invertible. This system can be written

C̃

⎡⎣ Xt+1

Etxt+1
Etit+1

⎤⎦ = Ã

⎡⎣ Xt

xt
it

⎤⎦+ ∙ zt+1
0

¸
, (A.1)

where Etqt+τ ≡
R
qt+τdΦt(ζ

t) for any variable qt+τ (τ ≥ 0), the matrices Ã and C̃ are of dimension

(nX + nx)× (nX + nx + ni) and given by

Ã ≡
£
A B

¤
≡
∙
A11 A12 B1
A21 A22 B2

¸
, C̃ ≡

∙
I 0 0
0 C 0

¸
.

where A and B are partitioned according to (2.3).

The target variables are defined by (2.5). The intertemporal loss function in period 0 is

E0

∞X
t=0

δtLt,

1



where the period loss function, (2.7), can be written as

Lt =
1

2

£
X 0
t x0t i0t

¤
D0WD

⎡⎣ Xt

xt
it

⎤⎦ .
Consider minimizing this intertemporal loss function under once-and-for-all commitment in period

t = 0, for given X0 = X̄0. For convergence, when the variance of zt+1 is nonzero, I need 0 < δ < 1.

Variants of this problem are solved in Backus and Driffill [2], Currie and Levine [5], and Söderlind

[20], when the deviation is an iid shock. The focus here is on the case when the deviation is an

arbitrary stochastic process.

Construct the Lagrangian,

L0 = E0

∞X
t=0

δt

⎧⎨⎩Lt +
£
ξ0t+1 Ξ0t

¤⎛⎝C̃

⎡⎣ Xt+1

Etxt+1
Etit+1

⎤⎦− Ã

⎡⎣ Xt

xt
it

⎤⎦− ∙ zt+1
0

¸⎞⎠⎫⎬⎭
+ ξ00(X0 − X̄0)/δ

= E0

∞X
t=0

δt

⎧⎨⎩Lt +
£
ξ0t+1 Ξ0t

¤⎛⎝C̃

⎡⎣ Xt+1

xt+1
it+1

⎤⎦− Ã

⎡⎣ Xt

xt
it

⎤⎦− ∙ zt+1
0

¸⎞⎠⎫⎬⎭
+ ξ00(X0 − X̄0)/δ,

where ξt+1 and Ξt are vectors of nX and nx Lagrange multipliers of the upper and lower block,

respectively, of (A.1). The law of iterated expectations has been used in the second equality,

E0Et = E0 for t ≥ 0. Note that Ξt is dated to emphasize that it depends on information available

in period t.

For t ≥ 1, the first-order conditions with respect to Xt, xt and it can be written£
X 0
t x0t i0t

¤
D0WD +

£
ξ0t Ξ

0
t−1

¤ 1
δ
C̃ −

£
Etξ

0
t+1 Ξ0t

¤
Ã = 0. (A.2)

For t = 0, the first-order condition with respect to X0, x0, and i0 can be written£
X 0
t x0t i0t

¤
D0WD +

£
ξ0t 0

¤ 1
δ
C̃ −

£
Etξ

0
t+1 Ξ0t

¤
Ã = 0, (A.3)

where X0 = X̄0. In comparison with (A.2), a vector of zeros enters in place of Ξ−1, since there is

no constraint corresponding to the lower block of (A.1) for t = −1. By including a fictitious vector

of Lagrange multipliers, Ξ−1, equal to zero,

Ξ−1 = 0, (A.4)

in (A.3), I can write the first-order conditions more compactly as (A.2) for t ≥ 0 and (A.4).
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The system of difference equations (A.2) has nX + nx + ni equations. The first nX equations

can be associated with the Lagrange multipliers ξt. Indeed, − ξt/δ can be interpreted as the total

marginal losses in period t of the predetermined variables Xt (for t = 0, with given X0, the equa-

tions determine ξ0). They are forward-looking variables: Lagrange multipliers for predetermined

variables are always forward-looking, whereas the Lagrange multipliers for the (equations for the)

forward-looking variables are predetermined. The middle nx equations are associated with the La-

grange multipliers Ξt. Indeed, ΞtA22 can be interpreted as the total marginal losses in period t of

the forward-looking variables, xt. Also, ΞtC can be seen as the marginal loss in period t of expec-

tations Etxt+1 of the forward-looking variables. The last ni equations are the first-order equations

for the vector of instruments. In the special case when the lower right ni×ni submatrix of D0WD

is of full rank, the instruments can be solved in terms of the other variables and eliminated from

(A.2), leaving the first nX+nx equations involving the Lagrange multipliers and the predetermined

and forward-looking variables only.

Rewrite the nX + nx + ni first-order conditions as

Ã0
∙
Etξt+1
Ξt

¸
= D0WD

⎡⎣ Xt

xt
it

⎤⎦+ 1
δ
C̃ 0
∙

ξt
Ξt−1

¸
. (A.5)

They can be combined with the model equations (A.1) to get a system of 2(nX+nx)+ni difference

equations for t ≥ 0,

∙
C̃ 0

0 Ã0

¸⎡⎢⎢⎢⎢⎣
Xt+1

Etxt+1
Etit+1
Etξt+1
Ξt

⎤⎥⎥⎥⎥⎦ =
∙

Ã 0

D0WD 1
δ C̃

0

¸⎡⎢⎢⎢⎢⎣
Xt

xt
it
ξt
Ξt−1

⎤⎥⎥⎥⎥⎦+
⎡⎢⎢⎣

zt+1
0

0
0

⎤⎥⎥⎦ . (A.6)

Here, Xt and Ξt are predetermined variables, and xt, it, and ξt are non-predetermined variables.

This can be rearranged as the system

C
∙

y1,t+1
Ety2,t+1

¸
=M

∙
y1t
y2t

¸
+

⎡⎣ ∙ zt+1
0

¸
0

⎤⎦ ,
where

C ≡

⎡⎢⎢⎢⎢⎣
I 0 0 0 0
0 0 C 0 0
0 A021 0 0 A011
0 A022 0 0 A012
0 B02 0 0 B01

⎤⎥⎥⎥⎥⎦ , (A.7)

y1t ≡
∙

Xt

Ξt−1

¸
, y2t ≡

⎡⎣ xt
it
ξt

⎤⎦ .
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Thus, y1t is a vector of m1 ≡ nX + nx predetermined variables, and y2t is a vector of m2 ≡

nx + ni + nX non-predetermined variables.

Under suitable assumptions (see appendix B), such a system has a unique solution, which can

be written

y2t = F1y1t + Zt (A.8)

y1,t+1 = M1y1t +NEtZt+1 + PEtzt+1 +

∙
zt+1 − Etzt+1

0

¸
, (A.9)

where Zt is an m2-dimensional stochastic process given by

Zt ≡
∞X
τ=0

RτEtzt+1+τ ≡ Rzt, (A.10)

where I can interpret R as a linear operator on zt ≡ Et(z0t+1, z0t+2, ...)0.

In terms of the original variables, the solution for t ≥ 0, given X0 and Ξ−1 = 0, can be written⎡⎣ xt
it
ξt

⎤⎦ = F1

∙
Xt

Ξt−1

¸
+Rzt

≡ F

⎡⎣ Xt

zt

Ξt−1

⎤⎦ , (A.11)

∙
Xt+1

Ξt

¸
= M1

∙
Xt

Ξt−1

¸
+NREtz

t+1 + PEtzt+1 +

∙
zt+1 − Etzt+1

0

¸

≡ M

⎡⎣ Xt

zt

Ξt−1

⎤⎦+ ∙ zt+1 − Etzt+1
0

¸
, (A.12)

where F and M are linear operators. The details of the solution are derived in appendix B. The

matrices F1,M1, N , P , and {Rτ}∞τ=0–and thereby the linear operatorsM and F–depend on A, B,

C, D,W , and δ, but are independent of the second and higher moments of the exogenous stochastic

process {zt}∞t=1. This demonstrates the certainty equivalence of the commitment solution.37

If the commitment is once and for all and starts in period 0, Ξ−1 = 0. Commitment in a timeless

perspective can be seen as corresponding to a situation where the lower block of (A.12) is restricted

to apply also for previous periods. Then, Ξt−1 is determined by

Ξt−1 = M121Xt−1 +M122Ξt−2 +N2Et−1Zt + P2Et−1zt

=
∞X
τ=0

M122
τ (M121Xt−1−τ +N2Et−1−τZt−τ + P2Et−1−τzt−τ ),

37 The middle block of (A.11) is the optimal explicit instrument rule for this problem, the instrument written as
a function of predetermined and exogenous variables. Eliminating the Lagrange multipliers from (A.2) results in
the optimal targeting rule for this problem, a consolidated optimal first-order condition for the target variables. See
Svensson [25] on instrument and targeting rules, as well as the lecture notes Svensson [A7].
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where M1, N , and P are partitioned conformably with Xt and Ξt−1.

Alternatively, the commitment in a timeless perspective can be generated as optimization under

commitment or discretion with a term added to the intertemporal loss function in period 0,

E0

∞X
t=0

δtLt + Ξ−1
1

δ
Cx0,

where Ξ−1 is the Lagrange multiplier for the block of forward-looking equations from the optimiza-

tion in period −1 (see Svensson and Woodford [30] and Svensson [25]).

In the standard case, when zt is a vector of iid zero-mean shocks, I have Etzt+1 ≡ 0, Zt ≡

EtZt+1 ≡ 0, and zt ≡ 0. Thus, the terms involving Zt in (A.11) and (A.12) vanish.38 Consequently,

the effect of zt being an arbitrary exogenous stochastic process shows up only in the addition of the

terms involving Zt and the corresponding matrices N , P , and {Rτ}∞τ=0. Then, I can set M ≡ M1

and F ≡ F1, and

y1,t+1 =My1t + zt+1.

Let Σ denote the variance-covariance matrix of the iid shocks zt+1. Define the matrices D̄ and W̄

according to

Yt = D

⎡⎣ Xt

xt
it

⎤⎦ = D

⎡⎣ I 0
F11 F12
F21 F22

⎤⎦ y1t ≡ D̄y1t,

Lt =
1

2
Y 0tWYt =

1

2
y01tD̄

0WD̄y1t ≡
1

2
y01tW̄y1t,

where W̄ is symmetric and positive semidefinite. Then twice the minimum loss in period t will

satisfy

y01tV y1t + w = Et

∞X
τ=0

δτy01,t+τW̄y1,t+τ

= y01tW̄y1t +Et

∞X
τ=1

δτy01,t+τW̄y1,t+τ

= y01tW̄y1t + δEtEt+1

∞X
τ=0

δτy01,t+1+τW̄y1,t+1+τ

= y01tW̄y1t + δEt(y
0
1,t+1V y1,t+1 + w)

= y01tW̄y1t + δ(y01tM
0VMy1t +Etz

0
1,t+1V z1,t+1 + w)

= y01tW̄y1t + δy01tM
0VMy1t + δtrace(VΣ) + δw.

38 In the case when {zt} is an autoregressive process and can be written zt+1 = Ψzt + εt+1, where Ψ is a matrix
and εt an iid zero-mean process, zt can simply be included among the predetermined variable.
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It follows that

w =
δ

1− δ
trace(V Σ),

and that the matrix V satisfies the Lyapunov equation

V = W̄ + δM 0VM. (A.13)

It follows that when trace(V Σ) is nonzero, I must have δ < 1 for the existence of an finite w.

I can use the relations vec(A + B) = vec(A) + vec(B) and vec(ABC) = (C 0 ⊗ A) vec(B) on

(A.13) (where vec(A) denotes the vector of stacked column vectors of the matrix A, and ⊗ denotes

the Kronecker product) which results in

vec (V ) = vec(W̄ ) + δvec
¡
M 0VM

¢
= vec(W̄ ) + δ

¡
M 0 ⊗M 0¢ vec (V ) .

Solving for vec (V ) gives

vec (V ) =
£
I − δ

¡
M 0 ⊗M 0¢¤−1 vec(W̄ ). (A.14)

A.1. No forward-looking variables

If there are no forward-looking variables, so nx = 0, I have

C̃

∙
Xt+1

Etit+1

¸
= Ã

∙
Xt

it

¸
+ zt+1, (A.15)

where the matrices Ã and C̃ are of dimension nX × (nX + ni) and given by

Ã ≡
£
A B

¤
, C̃ ≡

£
I 0

¤
.

The period loss function is

Lt =
1

2
Y 0tWYt ≡

1

2

£
X 0
t i0t

¤
D0WD

∙
Xt

it

¸
.

The nX + ni first-order conditions can be written

Ã0Etξt+1 = D0WD

∙
Xt

it

¸
+
1

δ
C̃ 0ξt. (A.16)

Combined with the model equations, I get a system of 2nX + ni difference equations for t ≥ 0,∙
C̃ 0

0 Ã0

¸⎡⎣ Xt+1

Etit+1
Etξt+1

⎤⎦ = ∙ Ã 0

D0WD 1
δ C̃

0

¸⎡⎣ Xt

it
ξt

⎤⎦+ ∙ zt+1
0

¸
.
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Here, Xt are predetermined variables, and it and ξt are non-predetermined variables.

Under suitable assumptions, this system will have a unique solution for t ≥ 0, given X0, which

can be written ∙
it
ξt

¸
= F1Xt +Rzt,

Xt+1 = M1Xt +N0Rz
t + zt+1.

When there are no forward-looking variables, Xt+1 is directly determined by Xt, it, and zt+1

according to (2.1), so M1 and N0 are determined by A, B, and F1 as

M1 ≡ A+BFi,

N0 ≡ [B 0],

where

F1 ≡
∙
Fi
Fξ

¸
is partitioned conformably with it and ξt. In comparison with the general solution of (A.9), for the

backward-looking case,

N0Rz
t ≡ NREtz

t+1 + (P − I)Etzt+1.

B. The solution of a system of difference equations with the deviation

In order to understand the term in the solution (A.10) and (A.11) that corresponds to the deviation,

consider the system

C
∙

y1,t+1
Ety2,t+1

¸
=M

∙
y1t
y2t

¸
+

∙
θt+1
0

¸
(B.1)

for t ≥ 0; where y1t is a vector of m1 predetermined variables (y1t ≡ (X 0
t,Ξ

0
t−1)

0 and m1 = nX +nx

in the previous section); y2t is a vector of m2 non-predetermined variables (y2t ≡ (x0t, i0t, ξ0t)0 and

m2 = nx+ni+nX in the previous section); θt is an m1-vector of stochastic processes (θt ≡ (z0t, 00)0

in the previous section); and y10 is given.

By defining the m2-vector of endogenous expectation errors, ηt, as

ηt ≡ y2t − Ety2t,

(B.1) can be written in the form used in Sims [A6],

Γ0yt = Γ1yt−1 +Ψθt +Πηt,
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where yt ≡ (y01t, y
0
2t)

0. Sims shows that, under suitable assumptions, this system has a unique

solution of the form

yt = Θ1yt−1 +Θ0θt +Θy

∞X
τ=0

Θτ
fΘθEtθt+1+τ ,

where Θ0 and Θ1 are real matrices, Θy, Θf , and Θθ are complex matrices, and ΘyΘ
τ
fΘθ for any

integer τ ≥ 0 is a real matrix. These matrices can be calculated by his Matlab program Gensys,

available at www.princeton.edu/∼sims. An advantage with Sims’s approach is that one need not

keep track of what variables are predetermined or nonpredetermined. An arguable disadvantage is

that the determination of the expectational errors is somewhat complex.

Here, I prefer to keep close track of what variables are predetermined and nonpredetermined

and therefore choose to derive the solution to (B.1) following a route closer to Klein [A4] than

Sims [A6], but going beyond Klein in, as Sims, explicitly treating the case of θt being an arbitrary

stochastic process rather than an autoregressive process. The solution will then be of the form

y2t = F1y1t + Zt,

y1,t+1 = M1y1t +NEtZt+1 + PEtθt+1 + (θt+1 − Etθt+1),

Zt ≡
∞X
τ=0

RτEtθt+1+τ ,

where F1, M1, N , P , and Rτ are real matrices to be determined.

Take the expectation conditional on information in period t and write the system as

C
∙
Ety1,t+1
Ety2,t+1

¸
=M

∙
y1t
y2t

¸
+

∙
Etθt+1
0

¸
. (B.2)

Following Klein [A4], Sims [A6], and Söderlind [20], I use the generalized Schur decomposition.

This decomposition results in the square complex matrices Q, S, T , and Z such that

C = Q0SZ 0, (B.3)

M = Q0TZ 0, (B.4)

where Z 0 for a complex matrix denotes the complex conjugate transpose of Z (the transpose of the

complex conjugate of Z).39 The matrices Q and Z are unitary (Q0Q = Z 0Z = I), and S and T

are upper triangular (see Golub and van Loan [A2]). The decomposition is furthermore ordered so

the block consisting of the stable generalized eigenvalues (the jth diagonal element of T divided

39 Let the elements of the complex matrix Z be denoted zjk ≡ Re(zjk)+ i Im(zjk). Then the complex conjugate of
the matrix Z is the matrix of elements z̄jk ≡ Re(zjk)− i Im(zjk).
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by the jth diagonal element of S, λj ≡ tjj/sjj) comes first and the block of unstable generalized

eigenvalues comes last.40

More precisely, I assume the saddle-point property emphasized by Blanchard and Kahn [A1]:

The number of eigenvalues with modulus larger than unity equals the number of nonpredetermined

variables. Thus, I assume that |λj | > 1 for m1+1 ≤ j ≤ m1+m2 and |λj | < 1 for 1 ≤ j ≤ m1 (for

an exogenous predetermined variable with a unit root, I can actually allow |λj | = 1 for some 1 ≤ j

≤ m1).

Define ∙
ỹ1t
ỹ2t

¸
≡ Z 0

∙
y1t
y2t

¸
. (B.5)

I can interpret ỹ1t as a complex vector of m1 transformed predetermined variables and ỹ2t as a

complex vector of m2 transformed non-predetermined variables. Premultiply the system (B.2) by

Q and use (B.3)-(B.5) to write it as∙
S11 S12
0 S22

¸ ∙
Etỹ1,t+1
Etỹ2,t+1

¸
=

∙
T11 T12
0 T22

¸ ∙
ỹ1t
ỹ2t

¸
+

∙
Q11
Q21

¸
Etθt+1, (B.6)

where S, T , and Q have been partitioned conformably with ỹ1t and ỹ2t.

Consider the lower block of (B.6),

S22 Etỹ2,t+1 = T22 ỹ2t +Q21Etθt+1. (B.7)

Since the diagonal terms of S22 and T22 (sjj and tjj for m1+1 ≤ j ≤ m1+m2) satisfy |tjj/sjj | > 1,

the diagonal terms of T22 are nonzero, the determinant of T22 is nonzero, and T22 is invertible. Note

that S22 may not be invertible. I can then solve for ỹ2t as

ỹ2t = JEtỹ2,t+1 +KEtθt+1 (B.8)

=
∞X
τ=0

JτKEtθt+1+τ (B.9)

for t ≥ 0, where the complex matrices J and K (m2 ×m2 and m2 ×m1, respectively) are given by

J ≡ T−122 S22, (B.10)

K ≡ −T−122 Q21. (B.11)

Here, I have exploited that the modulus of the diagonal terms of T−122 S22 is less than one. I also

assume that Etỹ2,t+τ and Etθt+τ are sufficiently bounded. Then JτEtỹ2,t+τ → 0 when τ →∞, and
40 The sorting of the eigenvalues is often done by two programs written by Sims and available at

www.princeton.edu/∼sims, Qzdiv and Qzswitch.
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the infinite sum on the right side converges. Note that J may not be invertible, since S22 may not

be invertible.

I have, by (B.5),

y1t = Z11ỹ1t + Z12ỹ2t, (B.12)

y2t = Z21ỹ1t + Z22ỹ2t, (B.13)

where

Z ≡
∙
Z11 Z12
Z21 Z22

¸
(B.14)

is partitioned conformably with y1t and y2t. Under the assumption of the saddle-point property,

Z11 is square. I furthermore assume that Z11 is invertible. Then I can solve for ỹ1t in (B.12),

ỹ1t = Z−111 y1t − Z−111 Z12ỹ2t, (B.15)

and use this in (B.13) to get

y2t = F1y1t +Hỹ2t, (B.16)

where the real m2 ×m1 matrix F1 and the complex m2 ×m2 matrix H are given by

F1 ≡ Z21Z
−1
11 , (B.17)

H ≡ Z22 − Z21Z
−1
11 Z12. (B.18)

I will show below that H is invertible.

By (B.9) and (B.16), I can then write the solution of y2t as

y2t = F1y1t + Zt, (B.19)

where Zt is a real exogenous m2-vector stochastic process (not to be confused with the unitary

matrix Z in the Schur decomposition) given by

Zt ≡ Hỹ2t ≡
∞X
τ=0

RτEtθt+1+τ , (B.20)

Rτ ≡ HJτK (τ ≥ 0), (B.21)

where the matrices Rτ are real.

I note that the complex conjugate transpose of Z, Z 0, satisfies

Z 0 ≡
∙
Z 011 Z 021
Z 012 Z 022

¸
, (B.22)
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where the submatrices are given by (B.14). Since Z 0Z = ZZ 0 = I, I have∙
Z11 Z12
Z21 Z22

¸ ∙
Z 011 Z 021
Z 012 Z 022

¸
=

∙
Z11Z

0
11 + Z12Z

0
12 Z11Z

0
21 + Z12Z

0
22

Z21Z
0
11 + Z22Z

0
12 Z21Z

0
21 + Z22Z

0
22

¸
=

∙
I 0
0 I

¸
, (B.23)

By (B.22), I can write

ỹ2t = Z 012y1t + Z 022y2t.

Using this in (B.16) gives

y2t = F1y1t +H(Z 012y1t + Z 022y2t)

= (F1 +HZ 012)y1t +HZ 022y2t.

It follows that

F1 +HZ 012 = 0, (B.24)

HZ 022 = I. (B.25)

I can also show (B.24) by using (B.23),

Z21Z
−1
11 + (Z22 − Z21Z

−1
11 Z12)Z

0
12 = Z21Z

−1
11 + Z22Z

0
12 − Z21Z

−1
11 Z12Z

0
12

= Z21Z
−1
11 + Z22Z

0
12 − Z21Z

−1
11 (I − Z11Z

0
11)

= Z21Z
−1
11 + Z22Z

0
12 − Z21Z

−1
11 + Z21Z

0
11

= 0.

Similarly, I can show (B.25) by

(Z22 − Z21Z
−1
11 Z12)Z

0
22 = Z22Z

0
22 − Z21Z

−1
11 Z12Z

0
22

= Z22Z
0
22 − Z21Z

−1
11 (−Z11Z

0
21)

= Z22Z
0
22 + Z21Z

0
21

= I.

It follows from (B.25) that H is invertible and that its inverse is given by

H−1 = Z 022. (B.26)

It remains to find a solution for y1,t+1. The upper block of (B.6) is

S11Etỹ1,t+1 + S12Etỹ2,t+1 = T11ỹ1t + T12ỹ2t +Q11Etθt+1.
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Since the diagonal terms of S11 and T11 satisfy |tjj/sjj | < 1, all diagonal terms of S11 must be

nonzero, so the determinant of S11 is nonzero, and S11 is invertible. I can then solve for Etỹ1,t+1 as

Etỹ1,t+1 = S−111 (T11ỹ1t + T12ỹ2t)− S−111 S12Etỹ2,t+1 + S−111 Q11Etθt+1.

By (B.12),

Ety1,t+1 = Z11Etỹ1,t+1 + Z12Etỹ2,t+1

= Z11[S
−1
11 (T11ỹ1t + T12ỹ2t)− S−111 S12Etỹ2,t+1 + S−111 Q11Etθt+1] + Z12Etỹ2,t+1

= Z11S
−1
11 T11ỹ1t + Z11S

−1
11 T12ỹ2t + (Z12 − Z11S

−1
11 S12)Etỹ2,t+1 + Z11S

−1
11 Q11Etθt+1

= Z11S
−1
11 T11(Z

−1
11 y1t − Z−111 Z12ỹ2t) + Z11S

−1
11 T12ỹ2t + (Z12 − Z11S

−1
11 S12)Etỹ2,t+1

+Z11S
−1
11 Q11Etθt+1

= Z11S
−1
11 T11Z

−1
11 y1t + Z11S

−1
11 (T12 − T11Z

−1
11 Z12)ỹ2t

+(Z12 − Z11S
−1
11 S12)Etỹ2,t+1 + Z11S

−1
11 Q11Etθt+1

= Z11S
−1
11 T11Z

−1
11 y1t + Z11S

−1
11 (T12 − T11Z

−1
11 Z12)(JEtỹ2,t+1 +KEtθt+1)

+ (Z12 − Z11S
−1
11 S12)Etỹ2,t+1 + Z11S

−1
11 Q11Etθt+1

= Z11S
−1
11 T11Z

−1
11 y1t

+ [Z11S
−1
11 (T12 − T11Z

−1
11 Z12)J + (Z12 − Z11S

−1
11 S12)]Etỹ2,t+1

+Z11S
−1
11 [Q11 + (T12 − T11Z

−1
11 Z12)K]Etθt+1, (B.27)

where I have used (B.15) and (B.8).

It follows that I can use (B.27), (B.20), and (B.26) and write the solution as

y1,t+1 =My1t +NEtZt+1 + PEtθt+1 + (θt+1 − Etθt+1), (B.28)

where the real matrices M , N , and P are given by

M ≡ Z11S
−1
11 T11Z

−1
11 , (B.29)

N ≡ [Z11S
−1
11 (T12 − T11Z

−1
11 Z12)J + (Z12 − Z11S

−1
11 S12)]Z

0
22, (B.30)

P ≡ Z11S
−1
11 [Q11 + (T12 − T11Z

−1
11 Z12)K]. (B.31)

Thus, the solution to the system (B.1) is given by (B.19) and (B.28) for t ≥ 0. This results in

the solution (A.11)-(A.12) above, where the matrix P in (A.12) is the submatrix of the first nX

rows of the matrix P in (B.31) (since θt+1 ≡ (z0t+1, 00)0).
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C. The model when judgment is a finite-order moving average

When the deviation is a finite-order moving-average process and the dynamics of the deviation and

judgment is described by (2.16), the model can be written as⎡⎣ Xt+1

zt+1

Cxt+1|t

⎤⎦ = Ā

⎡⎣ Xt

zt

xt

⎤⎦+ B̄it +

⎡⎣ εt+1
εt+1

0

⎤⎦ , (C.1)

where the matrices Ā and B̄ are given by

Ā ≡

⎡⎣ A11 Az12 A12
0 Az22 0
A21 0 A22

⎤⎦ , B̄ ≡

⎡⎣ B1
0
B2

⎤⎦ ,
the matrix Az is partitioned conformably with zt and zt as

Az ≡
∙
0 Az12

0 Az22

¸
,

and ε̃t ≡ (ε0t, εt 0)0 is zero-mean and iid. Thus, this results in the standard forward-looking linear-

quadratic model, with the predetermined variables being Xt and zt. The optimal policy projection

can then be described as (2.17) and (2.18), where F and M are finite-dimensional matrices. The

intertemporal loss for the optimal policy projection can then be written as

1

2

⎡⎣ Xt

zt

Ξt−1,t−1

⎤⎦0 V
⎡⎣ Xt

zt

Ξt−1,t−1

⎤⎦ ,
where the matrix V is the solution to the Lyapunov equation,

V = W̄ + δM 0VM,

the symmetric and positive semidefinite matrix W̄ is defined by

W̄ =

⎡⎣ I 0 0
Fx
Fi

⎤⎦0D0WD

⎡⎣ I 0 0
Fx
Fi

⎤⎦ ,
and the matrix F is partitioned conformably with xt and it as

F ≡
∙
Fx
Fi

¸
.

13



D. TheMarcet-Marimonmethod to solve the linear-quadratic optimization prob-

lem with forward-looking variables

Let X̄t ≡ (Xt, z
t) and write the model (C.1) as

X̄t+1 = Ā11X̄t + Ā12xt + B̄1it + ε̃t+1, (D.1)

CEtxt+1 = Ā21X̄t + Ā22xt + B̄2it. (D.2)

Write the period loss function as

Lt =
1

2

⎡⎣ X̄t

xt
it

⎤⎦0W 0

⎡⎣ X̄t

xt
it

⎤⎦ , (D.3)

where the symmetric positive semidefinite matrix W 0 is defined by⎡⎣ X̄t

xt
it

⎤⎦0W 0

⎡⎣ X̄t

xt
it

⎤⎦ ≡
⎡⎣ Xt

xt
it

⎤⎦0D0WD

⎡⎣ Xt

xt
it

⎤⎦ .
Consider the problem in period 0,

min
{it}t≥0

E0

∞X
t=0

δtLt, (D.4)

subject to (D.1), (D.2) and X0 given. The minimization is taken to be under commitment.

Marcet and Marimon [14] show that this problem can be reformulated as a recursive saddlepoint

problem,

max
{γt}t≥0

min
{xt,it}t≥0

E0

∞X
t=0

δtL̃t, (D.5)

where the modified period loss function satisfies

L̃t ≡ L̃(X̄t,Ξt−1;xt, it, γt)

≡ Lt + L1t

≡ Lt + γ0t(− Ā21X̄t − Ā22xt − B̄2it) +
1

δ
Ξ0t−1Cxt,

and the optimization is subject to (D.1), to

Ξt = γt, (D.6)

and to X0 and Ξ−1 = 0 given. The value function for the saddlepoint problem, starting in any

period t, satisfies

Ṽ (X̄t,Ξt−1) ≡ max
γt

min
(xt,it)

{L̃(X̄t,Ξt−1;xt, it, γt) + δEtṼ (X̄t+1,Ξt)},

14



subject to (D.1) and (D.6).

Define

X̃t ≡
∙

X̄t

Ξt−1

¸
, ı̃t ≡

⎡⎣ xt
it
γt

⎤⎦ ,
and define W̄ , Ã, B̃, and C̃ such that

L̃t ≡
1

2

∙
X̃t

ı̃t

¸0
W̄

∙
X̃t

ı̃t

¸
, (D.7)

X̃t+1 = ÃX̃t + B̃ı̃t + C̃ε̃t+1. (D.8)

The problem (D.5) subject to (D.8) and given X̃t is isomorphic to a standard backward-looking

linear-quadratic problem, except being a saddlepoint problem. However, the saddlepoint aspect

does not affect the first-order conditions. It is easy to show that the first-order conditions of the

saddlepoint problem are identical to those of the original problem, (D.4) subject to (D.1) and (D.2).

The value function for the saddlepoint problem is quadratic,

Ṽ (X̃t) ≡
1

2
(X̃ 0

tṼ X̃t + w̃),

where Ṽ solves the Riccati equation,

Ṽ = Q+ δÃ0Ṽ Ã− (δB̃0Ṽ Ã+N 0)0(δB̃0Ṽ B̃ +R)−1(δB̃0Ṽ Ã+N 0),

where

W̄ ≡
∙

Q N
N 0 R

¸
,

is partitioned conformably with X̃t and ı̃t.

The optimal reaction function for the saddlepoint problem is linear,

ı̃t = FX̃t ≡

⎡⎣ Fx
Fi
Fγ

⎤⎦ X̃t,

where F is partitioned conformably with xt, it, and γt and satisfies

F ≡ − (δB̃0Ṽ B̃ +R)−1(δB̃0Ṽ Ã+N 0).

This reaction function function is the optimal reaction function function for the original problem.

Optimization in a timeless perspective in period t corresponds to taking Ξt−1 from the previous

period’s decision problem as given, also in period 0.
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The equilibrium dynamics will be given by

X̃t+1 = MX̃t + C̃εt+1,

xt = FxX̃t,

it = FiX̃t,

Lt =
1

2
X̃ 0
tW̃ X̃t,

where

M ≡ Ã+ B̃F̃ ,

W̃ ≡

⎡⎣ I 0
Fx
Fi

⎤⎦0W 0

⎡⎣ I 0
Fx
Fi

⎤⎦ .
The value function for the saddlepoint problem can be decomposed according to

1

2
(X̃ 0

tṼ X̃t + w̃) ≡ 1
2
(X̃ 0

tV X̃t + w) +
1

2
(X̃ 0

tV
1X̃t + w1),

where
1

2
(X̃ 0

tV X̃t +w) ≡ Et
∞X
τ=0

δτ−t
1

2
X̃ 0
t+τW̃ X̃t+τ ,

is the value function for the original problem starting in period t with X̃t ≡ (X 0
t,Ξ

0
t−1)

0 given. The

matrix V will satisfy the Lyapunov equation,

V = W̃ + δM 0VM,

and, when δ < 1, the constant w will satisfy

w =
δ

1− δ
tr(C̃ 0V C̃Σε̃ε̃),

where Σε̃ε̃ is the covariance matrix for ε̃t.

E. An alternative finite-horizon numerical procedure for forward-looking models

In the finite-horizon model in section 3.1, there is an obvious alternative numerical procedure that

will provide a projection arbitrarily close to the optimal policy projection without requiring such a

long horizon that Xt+T,t and Ξt+T−1,t are close to their steady-state levels. It requires iterations,

though.
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Assume that iteration j−1 has resulted in Ξ(j−1)t+T−1,t. Start iteration j by using (2.17) and (2.18)

to replace (3.3) by

xt+T+1,t = FxM1

"
Xt+T,t

Ξ
(j−1)
t+T−1,t

#
,

where the matrices F1 and M1 are defined by

F

⎡⎣ Xt

0
Ξt−1

⎤⎦ ≡ F1

∙
Xt

Ξt−1

¸
, M

⎡⎣ Xt

0
Ξt−1

⎤⎦ ≡M1

∙
Xt

Ξt−1

¸
,

and F1 is partitioned conformably with xt and it as

F1 ≡
∙
Fx
Fi

¸
.

Consequently, replace (3.4) by

−A21Xt+T,t −A22xt+T,t −B2it+T,t + CFxM1

"
Xt+T,t

Ξ
(j−1)
t+T−1,t

#
= 0. (E.1)

Use (3.1), (3.2), and (E.1) to construct G and gt (the left submatrix of the matrix CFxM1 will

enter the last block of G and the product of the right submatrix and Ξ(j−1)t+T−1,t will enter the last

block of gt). Furthermore, add the term (3.7) with Ξt+T−1,t = Ξ
(j−1)
t+T−1,t to the loss function (that is,

modify the diagonal block of Ω that corresponds to Xt+T,t and add a linear term that corresponds

to the cross products of Xt+T,t and Ξ
(j−1)
t+T−1,t). Find the optimal policy projection ŝ

t(j) and Lagrange

multiplier Λt(j) via the analogue of (3.12). This ends iteration j and results in Ξ(j)t+T−1,t. Continue

until Ξ(j)t+T−1,t has converged.

Obviously this alternative procedure does not require that Xt+T,t and Ξt+T−1,t are close to

their steady-state levels. Which procedure is fastest will depend on the number of variables in the

problem and the rate of convergence towards the steady state of the optimal policy projection.

F. The feasible set of projections of the states of the economy, the feasible set of

projections of the target variables, and the optimal targeting rule

In the finite-horizon projection model in section 3.1, the feasible set of projections in period t of

the states of the economy, St, is the set of projections st that satisfy (3.5), repeated here as

Gst = gt. (F.1)

That is, St is the set of solutions to (F.1) for given G and gt. Define n ≡ (T + 1)(nX + nx + ni),

m ≡ (T + 1)(nX + nx) < n, and p ≡ (T + 1)ni ≡ n−m. Note that G is m× n, st is n× 1, and gt

is m× 1. Assume that G is of rank m.

17



Since G is of rank m, the set of solutions to (F.1) is a linear manifold of Rn of dimension

p ≡ n−m.41 It can be written as the set of projections st that satisfy

st = G+gt + (I −G+G)ξ (F.2)

for any ξ ∈ Rn (see Harville [A2, chapters 11 and 20]). Here, the n×m matrix G+ is the Moore-

Penrose inverse of G. When G is m× n and of rank m, the Moore-Penrose inverse is given by

G+ = G0(GG0)−1

(note that GG0 is m × m, of rank m, and hence invertible). Then, G+G = G0(GG0)−1G is a

projection matrix that projects vectors in Rn on the m-dimensional column space of the n × m

matrix G0, the transpose of G.42 Denote the column space of G0 by C(G0). For any ξ in Rn,

the vector G+Gξ lies in C(G0). Then I − G+G is a projection matrix that projects vectors in Rn

off the column space of G0, that is, on the p-dimensional subspace of Rn orthogonal to C(G0),

the orthogonal complement of C(G0) (relative to Rn), denoted C⊥(G0). Hence, the solution set St
consist of C⊥(G0) shifted away from the origin by the vector G+gt,

St = {G+gt}+ C⊥(G0).

Furthermore, the vector G+gt is the st of minimum norm that satisfies (F.1). Then, G+gt is

orthogonal to the solution set St and lies in the column space of G, C(G0).43

Figure F.1 provides an illustration of the above, when n = 2 andm = p = 1. The linear manifold

St, the set of feasible projections of the states of the economy, st, is shown as the negatively sloped

line through the point st = G+gt. The column space C(G0) is the positively sloped line through

the origin. The linear manifold St is orthogonal to the column space. The orthogonal complement

of the column space, C⊥(G0), is the negatively sloped line through the origin. The linear manifold

is the orthogonal complement shifted away from the origin to the point G+gt. Furthermore, the

point G+gt is the point in the linear manifold with the shortest distance to the origin.

Let G⊥ denote a p× n matrix with p linearly independent rows, each of which is orthogonal to

the m rows of G. Then C⊥(G0) = C(G⊥0), where the latter expression denotes the column space of
41 Let V be a linear space. A subset S of V is a linear manifold of V (also called a linear variety of V ), if there is a

v in V such that the set S− {v} ≡ {s− v|s ∈ S} is a subspace of V . The dimension of S is the dimension of S− {v}.
Hence, a linear manifold is a subspace that has possibly been shifted away from the origin (in the above case by the
vector v).
42 In this section, the word “projection” is used not only to refer to mean forecasts but also, depending on the

context, to refer to mathematical projections in linear space.
43 A vector is orthogonal to a linear manifold if it is orthogonal to the corresponding subspace.
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Figure F.1: The set of feasible projections of the state of the economy, St

Rn
C(G' )

C (G' )

St

G+gt

0

st^

⊥

Ωst+ωt–1
^

G⊥0, and St can be written as the set of projections st that satisfy

st = G+gt +G⊥0ξ

for any ξ ∈ Rn.

The projection of the target variables, Y t, is a linear function of the projection of the states of

the economy according to (3.6), repeated here as

Y t = D̃st. (F.3)

Let q ≡ (T +1)nY ≤ n, note that Y t is q× 1 and D̃ is q×n, and take D̃ to be of rank q. It follows

that the set of feasible projections of the target variables, Yt, consists of the set of projections Y t

that satisfy

Y t = D̃G+gt + D̃G⊥0ξ

for any ξ in Rn. This is a linear manifold of Rq of dimension at most min(p, q). If I take as the

normal case that the number of target variables is at least as large as the number of instruments,

nY ≥ ni (typically, there are at least two target variables, inflation and the output gap, but only

one instrument, the instrument rate), I have q ≥ p, and the set of feasible projections of the target

variables, Yt, is a linear manifold of Rq of dimension at most p ≤ q. The matrix D̃ simply maps

the p-dimensional linear manifold St of Rn into the at most p-dimensional linear manifold Yt of Rq.
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Figure F.2: The set of feasible projections of the target variables, Yt
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It follows that Yt is the at most p-dimensional column space C(D̃G⊥0) in Rq shifted away from

the origin by the vector D̃G+gt,

Yt = {D̃G+gt}+ C(D̃G⊥0).

Figure F.2 provides an illustration of the above, when q = 2 and p = 1. The linear manifold

Yt, the set of feasible projections of the target variables, Y t, is shown as the negatively sloped line

through the point Y t = D̃G+gt. The column space of the matrix D̃G⊥0, C(D̃G⊥0), is shown as the

negative sloped line through the origin. The linear manifold Yt is this column space shifted away

from the origin to the point D̃G+gt.

F.1. An optimal targeting rule for the forward-looking model

Consider the first-order condition for optimal policy under commitment in a timeless perspective

in the forward-looking model, (3.10), rewritten here as

Ωst + ωt−1 +G0Λt = 0 (F.4)

The optimal targeting rule is the first-order condition in terms of Y t when the Lagrange multiplier

has been eliminated.

Let me interpret the first-order condition in terms of st, eliminate the Lagrange multiplier, and

interpret the resulting targeting rule. Note that Ω is n× n, st and ωt−1 are n× 1, G0 is n×m and

of rank m, and Λt is m× 1.
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Write the first-order condition as

Ωst + ωt−1 = G0(−Λt). (F.5)

The term Ωst+ωt−1 on the left side is the gradient of the loss function with respect to st, a vector

in Rn. The condition (F.5) can be interpreted as stating that the gradient of the loss function is an

element of the m-dimensional column space of the n×m matrix G0, C(G0), with −Λt providing the

coefficients of the corresponding linear combination of the column vectors of G0. This is equivalent

to the tangency of the loss function’s iso-loss surface in Rn with the feasible set of projections,

St. The gradient of the loss function is orthogonal to the iso-loss surface. Tangency of the iso-loss

surface with St is then equivalent to the gradient being orthogonal to St. The subspace orthogonal

to St is C(G0), as noted above.

This is illustrated in figure F.1 when n = 2 and m = p = 1. The curve shows part of the iso-loss

surface of the loss function that is tangential to the linear manifold St. The tangency occurs at

the optimal policy projection, ŝt. The gradient of the loss function at that point, Ωŝt + ωt−1, is

shown as the vector pointing northeast from that point. Tangency between the iso-loss surface and

the linear manifold is equivalent to the gradient being orthogonal to the linear manifold, or the

gradient being an element in the column space, C(G0).

In order to eliminate the Lagrange multipliers, premultiply (F.5) by G,44

G(Ωst + ωt−1) = GG0(−Λt). (F.6)

Exploit that GG0 is m×m, of rank m, and hence invertible, and solve for −Λt,

−Λt = (GG0)−1G(Ωst + ωt−1). (F.7)

(The matrix (GG0)−1G is actually the Moore-Penrose inverse of G0, G0+, where G0 is n ×m with

rank m.) Substitution of Λt in (F.4) gives

M(Ωst + ωt−1) = 0, (F.8)

where M is the n× n matrix (not to be confused with the matrix denoted M in other sections of

this paper)

M ≡ I −G0(GG0)−1G = I −G+G.

44 One might ask why multipliying with the matrix G with rank m < n rather than a matrix with full rank n does
not loose any information of (F.5). More formally, let G⊥ be a p× n matrix whose p rows are linearly independent
and orthogonal to the m rows of G. That is, the column space of G⊥0 is the space in Rn orthogonal to the column

space of G0. Then the n×n matrix G
G⊥

is of full rank. Multiplying (F.5) by this matrix leads to the m equations

of (F.6) and p additional trivial equations of zero equals zero, since we know that the left and right sides of (F.5) lie
in the column space of G0.
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As noted above, M is the projection matrix that projects vectors in Rn on the p-dimensional

orthogonal complement of the column space of G0, C⊥(G0). Hence, (F.8) states that the projection

on C⊥(G0) of the gradient of the loss function is zero. Of course, this follows directly from the

observation above that the gradient lies in C(G0).

In any case, the optimal targeting rule in terms of st is equivalent to the statement that the

gradient is orthogonal to the feasible set of projections of the states of the economy, St, which can

be expressed algebraically as (F.8).

However, (F.8) involves n equations, but only p independent equations. It is hence desirable to

condense (F.8) to only p equations. The projection matrix M is a symmetric idempotent matrix of

rank p. Then its spectrum consists of p eigenvalues equal to one and m eigenvalues equal to zero,

and it can be decomposed as

M = Q

∙
Ip 0
0 0

¸
Q0 ≡

£
Qp Qm

¤ ∙ Ip 0
0 0

¸ ∙
Q0p
Q0m

¸
≡ QpQ

0
p.

Here Q is the orthonormal n× n matrix whose columns are the eigenvectors of M , Ip is the p× p

identity matrix, and Qp is the n× p matrix whose columns are the p eigenvectors corresponding to

the p nonzero eigenvalues. Then, pre-multiplying (F.8) by Q0 gives the p nontrivial equations,

Q0p(Ωs
t + ωt−1) = 0, (F.9)

and m trivial equations of zero equals zero.

Furthermore, (F.9) is expressed in terms of the projection of the states of the economy, st. In

order to express it in terms of the projection of the target variables, Y t, note that, by the definition

of Ω for the forward-looking model in section 3.1,

Ωst ≡ D̃0W̃ D̃st ≡ D̃0W̃Y t,

where W̃ is a symmetric positive semidefinite block-diagonal (T +1)nY matrix with the (τ +1)-th

diagonal block being δτW for 0 ≤ τ ≤ T . Hence, I can write (F.9) as involving only the target

variables and, through the vector ωt−1, the Lagrange multiplier Ξt−1,t−1 from the optimization in

period t− 1,

Q0p[D̃
0W̃Y t + ωt−1] = 0. (F.10)

This is one concise form of the targeting rule. The history-dependence of the optimal policy

under commitment in a timeless perspective enters via Ξt−1,t−1.
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By combining (F.9) with (3.5), I get∙
G

Q0pΩ

¸
st =

∙
gt

−Q0pωt−1

¸
,

and

ŝt =

∙
G

Q0pΩ

¸−1 ∙
gt

−Q0pωt−1

¸
≡ H

⎡⎣ Xt

Ξt−1,t−1
zt

⎤⎦ , (F.11)

Ŷ t = D̃ŝt = D̃H

⎡⎣ Xt

Ξt−1,t−1
zt

⎤⎦ .
From (F.7) and (F.11), I can extract

Ξt,t = HΞ

⎡⎣ Xt

Ξt−1,t−1
zt

⎤⎦ ,
to be used in the intertemporal loss function for the decision problem in period t+ 1.

If the forward-looking variables, xt, are target variables–elements of Yt–the intertemporal loss

function with the added term can be written

1

2
Y t 0W̃Y t +w0t−1Y

t,

where wt−1 is a q-vector whose only nonzero elements contain the vector (Ξt−1,t−1 1δC)
0 such that

w0t−1Y
t ≡ Ξt−1,t−1 1δCxt,t. Then, the optimal targeting rule can be expressed as the gradient,

W̃Y t + wt−1, being orthogonal to the linear manifold Yt. Suppose Yt is of dimension p, and let

F ≡ D̃G⊥0 (not to be confused with the matrix denoted F in other sections of the paper). The

projection matrix that projects vectors in Rq on the p-dimensional subspace Yt− {D̃G+gt} is then

F (F 0F )−1F 0, so the condition that the gradient is orthogonal to the linear manifold Yt can be

written as the p equations.

F (F 0F )−1F 0W̃ (ΩY t + wt−1) = 0.

This is the optimal targeting rule for this case.

This case is illustrated in figure F.2. The curve in the figure shows a part of the iso-loss surface

of the loss function that is tangential to the linear manifold Yt. The tangency point is the optimal

policy projection of the target variables, Ŷ t. The gradient of the loss function at that point,

W̃ Ŷ t + wt−1, is shown as the vector at that point that points northeast. It is orthogonal to the

linear manifold.

Svensson [25] interprets optimal targeting rules in terms of the equality between the marginal

rates of transformation and marginal rates of substitution between the target variables. A vector
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of marginal rates of transformation between the target variables is a vector in the column space

C(D̃G⊥0), the subspace associated with Yt. A vector of marginal rates of substitution between the

target variables is a vector in the tangent space of the intertemporal loss function, the subspace

orthogonal to the gradient of the loss function. Equality between the marginal rates of transfor-

mation and substitution is equivalent to the gradient being orthogonal to Yt, that is, the iso-loss

surface being tangential to Yt.

G. An optimal restricted instrument rule

Add to the model (2.1) an explicit instrument rules of the form

it = fXXt, (G.1)

where the ni×nX matrix fX is restricted to be an element fX ∈ F of a given class F of instrument

rules. Assume that the deviation zt is an iid zero-mean process with variance-covariance matrix Σ.

Let the loss function in period t be

lim
δ→1

Et

∞X
τ=0

(1− δ)δτLt+τ = E[Lt],

where Lt is given by (2.7). By appendix A, for a given instrument rule fX , the conditional loss in

period t is, for a given δ (0 < δ < 1), given by

Et

∞X
τ=0

(1− δ)δτLt+τ =
1

2
{(1− δ)X 0

tV (fX , δ)Xt + δtrace[V (fX , δ)Σ]},

where V (fX , δ) is a symmetric positive semidefinite nX × nX matrix that depends on A, B, C, D,

W , fX , and δ. It follows that

E[Lt] =
1

2
trace[V (fX , 1)Σ].

The optimal restricted instrument rule, f̂X , is then given by

f̂X = arg min
fX∈F

1

2
trace[V (fX , 1)Σ].

It depends on the class F and the variance-covariance matrix Σ, in addition to A, B, C, D, and

W .

Note that there is little point in considering implicit instrument rules here,

it = fXXt + fxxt. (G.2)
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For any such implicit instrument rule f ≡ [fX fx] for which a unique equilibrium exists,

xt = g(f)Xt,

where the matrix g(f) depends on f . Then,

it = [fX + fxg(f)]Xt ≡ f̃X(f)Xt.

That is, for each implicit instrument rule f for which there is a unique equilibrium, there is a

unique explicit instrument rule f̃X(f) consistent with that equilibrium. Furthermore, for any

explicit instrument rule fX in (G.1) for which there is a unique equilibrium, there is a continuum

of implicit instrument rules consistent with that equilibrium. For any given instrument rule fX for

which there exists a unique equilibrium,xt = g(fX)Xt, where the matrix g(fX) depends on fX . For

any arbitrary ni × nx matrix fx, I can then write

it = fXXt + fx[xt − g(fX)Xt] = [fX − fxg(fX)]Xt + fxxt ≡ f̃X(fX , fx)Xt + fxxt.

The only reason for considering implicit instrument rules rather than an explicit instrument rule in

this context (when the deviation is an iid zero-mean shock) is when an explicit instrument rule has a

determinacy problem–multiple equilibria–in which case one may be able to find a corresponding

implicit instrument rule for which there is a unique equilibrium. Svensson and Woodford [30]

examine such issues further.

H. An empirical backward-looking model

The two equations of the model of Rudebusch and Svensson [18] are

πt+1 = απ1πt + απ2πt−1 + απ3πt−2 + απ4πt−3 + αyyt + zπ,t+1 (H.1)

yt+1 = βy1yt + βy2yt−1 − βr

µ
1

4
Σ3j=0it−j −

1

4
Σ3j=0πt−j

¶
+ zy,t+1, (H.2)

where πt is quarterly inflation in the GDP chain-weighted price index (pt) in percentage points at

an annual rate, i.e., 400(ln p− ln pt−1); it is the quarterly average federal funds rate in percentage

points at an annual rate; yt is the relative gap between actual real GDP (qt) and potential GDP (q∗t )

in percentage points, i.e., 100(qt− q∗t )/q
∗
t . These five variables were de-meaned prior to estimation,

so no constants appear in the equations.

The estimated parameters, using the sample period 1961:1 to 1996:2, are shown in table H.1.
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Table H.1
απ1 απ2 απ3 απ4 αy βy1 βy2 βr
0.70
(0.08)

− 0.10
(0.10)

0.28
(0.10)

0.12
(0.08)

0.14
(0.03)

1.16
(0.08)

− 0.25
(0.08)

0.10
(0.03)

The hypothesis that the sum of the lag coefficients of inflation equals one has a p-value of .16, so

this restriction was imposed in the estimation.45

The state-space form can be written⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

πt+1
πt
πt−1
πt−2
yt+1
yt
it
it−1
it−2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P4
j=1 απjej + αye5

e1
e2
e3

βre1:4 + βy1e5 + βy2e6 − βre7:9
e5
e0
e7
e8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

πt
πt−1
πt−2
πt−3
yt
yt−1
it−1
it−2
it−3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0

− βr
4
0
1
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
it +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

zπ,t+1
0
0
0

zy,t+1
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where ej (j = 0, 1, ..., 9) denotes a 1×9 row vector, for j = 0 with all elements equal to zero, for

j = 1, ..., 9 with element j equal to unity and all other elements equal to zero; and where ej:k

(j < k) denotes a 1×9 row vector with elements j, j + 1, ..., k equal to 1
4 and all other elements

equal to zero. The predetermined variables are πt, πt−1, πt−2, πt−3, yt, yt−1, it−1, it−2, it−2, and

it−3. There are no forward-looking variables.

For a loss function (5.3) with δ = 1, λ = 1, and ν = 0.2, and the case where zt is an iid zero-

mean shock; the optimal reaction function (2.21) is (the coefficients are rounded to two decimal

points),

it = 1.22πt+0.43πt−1+0.53πt−2+0.18πt−3+1.93 yt− 0.49 yt−1+0.36 it−1− 0.09 it−2− 0.05 it−3.

I. An empirical forward-looking model

An empirical New Keynesian model estimated by Lindé [13] is

πt = ωfπt+1|t + (1− ωf )πt−1 + γyt + zπt,

yt = βfyt+1|t + (1− βf )(βy1yt−1 + βy2yt−2 + βy3yt−3 + βy4yt−4)− βr(it − πt+1|t) + zyt,

where the restriction
P4

j=1 βyj = 1 is imposed. The estimated coefficients are (Table 6a in Lindé

[13], non-farm business output) are shown in table I.1.
45 This p-value was obtained by simulating the above inflation equation 1000 times and ranking the sum of

coefficients from the unrestricted Phillips curve estimated from the actual data (i.e., 0.969) in the set of unrestricted
sums estimated from the simulated data. This is in the spirit of Rudebusch [A5]. For comparison, the simple t -test
gives a p-value of 0.42.
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Table I.1
ωf γ βf βr βy1 βy2 βy3
0.457
(0.065)

0.048
(0.007)

0.425
(0.027)

0.156
(0.016)

1.310
(0.174)

− 0.229
(0.279)

− 0.011
(0.037)

For simplicity, I set βy1 = 1, βy2 = βy3 = βy4 = 0. Then the state-space form can be written as⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

πt
yt
it

zπ,t+1
zy,t+1

ωfπt+1|t
βrπt+1|t + βfyt+1|t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

− (1− ωf ) 0 0 − 1 0 1 − γ
0 − (1− βf ) 0 0 − 1 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

πt−1
yt−1
it−1
zπt
zyt
πt
yt

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
1
0
0
0
βr

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
it +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

zπ,t+1
zy,t+1
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The predetermined variables are πt−1, yt−1, it−1, zπt, and zyt, and the forward-looking variables

are πt and yt.

For a loss function (5.3) with δ = 1, λ = 1, and ν = 0.2, and the case where zt is an iid zero-

mean shock; the optimal reaction function (2.21) is (the coefficients are rounded to two decimal

points),

it = 0.58πt−1 + 0.80 yt−1 + 0.41 it−1 + 1.06 zπt + 1.38 zyt + 0.02Ξπ,t−1,t−1 + 0.20Ξy,t−1,t−1,

where Ξπ,t−1,t−1 and Ξy,t−1,t−1 are the Lagrange multipliers for the two equations for the forward-

looking variables in the decision problem in period t− 1.
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