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such as Ramses, the Riksbank’s main DSGE model.1 Such projec-
tions with anticipated policy rate paths correspond to situations
where the central bank transparently announces that it, conditional
on current information, plans to implement a particular policy rate
path and where this announced plan for the policy rate is believed
and then anticipated by the private sector. Such projections are
particularly relevant for central banks such as the Reserve Bank of
New Zealand (RBNZ), Norges Bank, the Riksbank, and the Czech
National Bank (CNB), where the policy announcement includes not
only the current policy rate decision but also a forecast path for the
future policy rate. They are also relevant in the discussion about
the kind of “forward guidance” about the future policy rate that
the Federal Reserve System and the Bank of Canada have recently
given.

A common method to do policy simulations for alternative policy
rate paths is to add unanticipated shocks to a given instrument rule
(a rule that specifies the policy rate as a function of observed vari-
ables), as in the method of modest interventions by Leeper and Zha
(2003) (see appendix 4). That method is designed to deal with policy
simulations that involve “modest” unanticipated deviations from a
given instrument rule. Such policy simulations correspond to a sit-
uation when the central bank would non-transparently and secretly
plan to surprise the private sector by deviations from an announced
instrument rule (or, alternatively, a situation when the central bank
announces and follows a future path but the path is not believed
by, and each period surprises, the private sector). Aside from corre-
sponding to policy that is either non-transparent or lacks credibility,
such deviations are in practical simulations often both serially corre-
lated and large, which can be inconsistent with the assumption that
they would remain unanticipated and interpreted as i.i.d. shocks by
the private sector. In other words, they are in practice often not
“modest” in the sense of Leeper and Zha. Projections with antici-
pated policy rate paths would in many cases seem more relevant for

1The policy rate (also called the instrument rate) is the short interest rate
that the central bank uses as a (policy) instrument (control variable). For the
Riksbank, the policy rate is the repo rate.
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the transparent flexible inflation targeting that central banks such
as the RBNZ, Norges Bank, the Riksbank, and the CNB conduct.2

A standard way to incorporate anticipated shocks (that is, shocks
with non-zero time-varying means) in an economic model with
forward-looking variables is to use a deterministic, perfect-foresight
variant of the model where all future shocks are set equal to their
means and are assumed to be known in the first period. Further-
more, a finite horizon is assumed, with a terminal condition where
all variables equal their steady-state values. The problem can then
be seen as a two-point boundary problem with an initial and a ter-
minal condition. Stacking the model equations for the finite number
of periods together with the initial and terminal condition gives rise
to a finite-dimensional simultaneous equation system, non-linear for
a non-linear model and linear for a linear model. The model can
then be solved with the Fair-Taylor (1983) algorithm or the so-called
stacked-time algorithm of Laffargue (1990), Boucekkine (1995), and
Juillard (1996). The horizon is extended until it has a negligible
effect on the solution.3 The Dynare (2009) collection of Matlab and
Octave routines uses the stacked-time algorithm for deterministic,
perfect-foresight settings.

Assuming a linear model (a linearized DSGE model), we provide
an alternative simple and convenient algorithm that allows a sto-
chastic interpretation—more precisely, a standard state-space rep-
resentation of a stochastic linear model with forward-looking vari-
ables, the solution of which can be expressed in a recursive form and
found with standard algorithms for the solution of linear rational
expectations systems, such as the Klein (2000), Sims (2000), or AIM
algorithms (Anderson and Moore 1983, 1985). The main idea is to
include among the predetermined variables (the “state” of the econ-
omy) the vector of non-zero means of future shocks to a given instru-
ment rule. By modeling the shocks as a moving-average process—
more precisely, the sum of zero-mean i.i.d. shocks—we allow a consis-
tent stochastic interpretation of new information about the non-zero

2However, as noted in Svensson (2010), there are recent cases when the Riks-
bank’s policy rate path has been far from credible and when projections with
unanticipated shocks may be more relevant.

3That is, one need only extend the horizon until such a point that the exten-
sion no longer affects the simulated results over the horizon of interest. This is a
“type III iteration” in the parlance of Fair and Taylor (1983).
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means. The policy rate path can then be written as a function of
the initial state of the economy, including the vector of anticipated
shocks, and the vector of anticipated shocks can be chosen so as to
result in any desired anticipated policy rate path. This is a special
case of the more general analysis of judgment in monetary policy in
Svensson (2005) and of optimal policy projections with judgment in
Svensson and Tetlow (2005).

Our algorithm thus adds an anticipated sequence of shocks to
a general but constant policy rule, including targeting rules (condi-
tions on the target variables, the variables that are the arguments of
the loss function) and explicit or implicit instrument rules (instru-
ment rules where the policy rate depends on predetermined vari-
ables only or also on forward-looking variables). It very conveniently
allows the construction of policy projections for alternative arbitrary
nominal and real policy rate paths, whether or not these are optimal
for a particular loss function.

We consider policy simulations where restrictions on the nom-
inal or real policy rate path are eventually followed by an antici-
pated future switch to a given well-behaved policy rule, either opti-
mal or arbitrary. With such a setup, there is a unique equilibrium
for each specified set of restrictions on the nominal or real policy
rate path. The equilibrium will, in a model with forward-looking
variables, depend on which future policy rule is implemented, but
for any given such policy rule, the equilibrium is unique. It is well
known since Sargent and Wallace (1975) that an exogenous nomi-
nal policy rate path will normally lead to indeterminacy in a model
with forward-looking variables (and to an explosive development in
a backward-looking model), so at some future time the nominal pol-
icy rate must become endogenous for a well-behaved equilibrium to
result (see also Gagnon and Henderson 1990). Such a setup with a
switch to a well-behaved policy rule solves the problem with multi-
ple equilibria for alternative policy rate projections that Gaĺı (2010)
has emphasized. On the other hand, consistent with Gaĺı’s results,
the unique equilibrium depends on and is sensitive to both the time
of the switch and the policy rule to which policy shifts.

We demonstrated our method for three different models, namely
the small empirical backward-looking model of the U.S. economy
of Rudebusch and Svensson (1999), the small empirical forward-
looking model of the U.S. economy of Lindé (2005), and Ramses,
the medium-sized model of the Swedish economy of Adolfson et al.
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(2007a).4 From the examples examined in this paper, we see that in
a model without forward-looking variables such as the Rudebusch-
Svensson model, there is no difference between policy simulations
with anticipated and unanticipated restrictions on the policy rate
path. In a model with forward-looking variables, such as the Lindé
model or Ramses, there is such a difference, and the impact of antic-
ipated restrictions would generally be larger than that of unantici-
pated restrictions. In a model with forward-looking variables, exoge-
nous restrictions on the policy rate path are consistent with a unique
equilibrium, if there is a switch to a well-behaved policy rule in the
future. For given restrictions on the policy rate path, the equilibrium
depends on that policy rule.

If inflation is sufficiently sensitive to the real policy rate,
“unusual” equilibria may result from restrictions for sufficiently
many quarters on the nominal policy rate. Such cases have the prop-
erty that a shift up of the real interest rate path reduces inflation
and inflation expectations so much that the nominal interest rate
path (which by the Fisher equation equals the real interest rate path
plus the path of inflation expectations) shifts down. Then, a shift
up of the nominal interest rate path requires an equilibrium where
the path of inflation and inflation expectations shifts up more and
the real policy rate path shifts down. In the Rudebusch-Svensson
model, which has no forward-looking variables, inflation is so slug-
gish and insensitive to changes in the real policy rate that there are
only small differences between restrictions on the nominal and real
policy rate. In the Lindé model, inflation is so sensitive to the real
policy rate that restrictions for five to six quarters or more on the
nominal policy rate result in unusual equilibria. In Ramses, unusual
equilibria seem to require restrictions for ten quarters or more. In
order to avoid unusual equilibria, restrictions should be imposed for
fewer quarters than that.

The paper is organized as follows: Section 2 presents the state-
space representation of a linear(ized) DSGE model and shows how
to do policy simulations with an arbitrary constant (that is, time-
invariant) policy rule, such as an instrument rule or a targeting rule.
Section 3 shows our convenient way of constructing policy projec-
tions that satisfy arbitrary anticipated restrictions on the nominal or
real policy rate by introducing anticipated time-varying deviations in

4See also Adolfson et al. (2007b, 2008).
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the policy rule. Section 4 provides examples of restrictions on nom-
inal and real policy rate paths for the Rudebusch-Svensson model,
the Lindé model, and Ramses. Section 5 presents some conclusions.

A few appendices contain some technical details. Appendix 1
specifies the policy rule under optimal policy under commitment.
Appendices 2 and 3 provide some details on the Rudebusch-Svensson
and Lindé models, respectively. Appendix 4 demonstrates the Leeper
and Zha (2003) method of modest interventions in this framework.

2. The Model

A linear model with forward-looking variables (such as a DSGE
model like Ramses that is linearized around a steady state) can be
written in the following practical state-space form:[

Xt+1
Hxt+1|t

]
= A

[
Xt

xt

]
+ Bit +

[
C
0

]
εt+1 (1)

for t = . . . ,−1, 0, 1, . . .. Here, Xt is an nX-vector of predetermined
variables in period t (where the period is a quarter); xt is an nx-
vector of forward-looking variables; it is generally an ni-vector of
(policy) instruments, but in the cases examined here it is a scalar,
the policy rate (in the Riksbank’s case the repo rate), so ni = 1; εt is
an nε-vector of i.i.d. shocks with mean zero and covariance matrix
Inε ; A, B, and C, and H are matrices of the appropriate dimen-
sion; and for any stochastic process yt, yt+τ |t denotes Etyt+τ , the
rational expectation of yt+τ conditional on information available in
period t. The forward-looking variables and the instruments are the
non-predetermined variables.5

The variables can be measured as differences from steady-state
values, in which case their unconditional means are zero. Alterna-
tively, one of the components of Xt can be unity, so as to allow
the variables to have non-zero means. The elements of the matri-
ces A, B, C, and H are normally estimated with Bayesian methods.
Here they are considered fixed and known for the policy simulations.

5A variable is predetermined if its one-period-ahead prediction error is an
exogenous stochastic process (Klein 2000). For (1), the one-period-ahead predic-
tion error of the predetermined variables is the stochastic vector Cεt+1.
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More precisely, the matrices are considered structural—for instance,
functions of the deep parameters in an underlying linearized DSGE
model. Hence, with a linear model with additive uncertainty and
a quadratic loss function as specified in appendix 1, the conditions
for certainty equivalence are satisfied; that is, mean forecasts are
sufficient for policy decisions.

The upper block of (1) provides nX equations determining the
nX-vector Xt+1 in period t + 1 for given Xt, xt, it, and εt+1,

Xt+1 = A11Xt + A12xt + B1it + Cεt+1, (2)

where A and B are partitioned conformably with Xt and xt as

A ≡
[
A11 A12
A21 A22

]
, B =

[
B1
B2

]
. (3)

The lower block provides nx equations determining xt in period t
for given xt+1|t, Xt, and it,

xt = A−1
22 (Hxt+1|t − A21Xt − B2it). (4)

Hence, we assume that the nx×nx submatrix A22 is non-singular, an
assumption which must be satisfied by any reasonable model with
forward-looking variables.6

In a backward-looking model—that is, a model without forward-
looking variables—there is no vector xt of forward-looking variables
and no lower block of equations in (1).

With a constant (that is, time-invariant) arbitrary instrument
rule, the policy rate satisfies

it = [fX fx]
[
Xt

xt

]
, (5)

where the ni × (nX + nx) matrix [fX fx] is a given (linear) instru-
ment rule and partitioned conformably with Xt and xt. If fx ≡ 0,
the instrument rule is an explicit instrument rule; if fx �= 0, the
instrument rule is an implicit instrument rule. In the latter case,

6Without loss of generality, we assume that the shocks εt only enter in the
upper block of (1), since any shocks in the lower block of (1) can be redefined as
additional predetermined variables and introduced in the upper block.
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the instrument rule is actually an equilibrium condition, in the
sense that in a real-time analogue the policy rate in period t and
the forward-looking variables in period t would be simultaneously
determined.

The instrument rule that is estimated for Ramses is of the follow-
ing form (see the appendix of Adolfson et al. 2011 for the notation):

it = ρRit−1 + (1 − ρR)[̂̄πc
t + rπ(π̂c

t−1 − ̂̄πc
t) + ryŷt−1 + rx

̂̃xt−1]

+ rΔπ

(
π̂c

t − π̂c
t−1

)
+ rΔy(ŷt − ŷt−1) + εRt. (6)

Since π̂c
t and ŷt, the deviation of CPI inflation and output from

trend, are forward-looking variables in Ramses, this is an implicit
instrument rule.

An arbitrary more general (linear) policy rule (G, f) can be
written as

Gxxt+1|t + Giit+1|t = fXXt + fxxt + fiit, (7)

where the ni × (nx + ni) matrix G ≡ [Gx Gi] is partitioned
conformably with xt and it and the ni × (nX + nx + ni) matrix
f ≡ [fX fx fi] is partitioned conformably with Xt, xt, and it.
This general policy rule includes explicit, implicit, and forecast-
based instrument rules (in the latter the policy rate depends on
expectations of future forward-looking variables, xt+1|t) as well as
targeting rules (conditions on current, lagged, or expected future
target variables).7 When this general policy rule is an instrument
rule, we require the nx × ni matrix fi to be non-singular, so (7)
determines it for given Xt, xt, xt+1|t, and it+1|t.

The optimal instrument rule under commitment (see appendix 1)
can be written as

0 = FiXXt + FiΞΞt−1 − it, (8)

where the matrix Fi in (33) is partitioned conformably with Xt and
Ξt−1. Here the nx-vector of Lagrange multipliers Ξt in equilibrium
follows

Ξt = MΞXXt + MΞΞΞt−1, (9)

7A targeting rule can be expressed in terms of expected leads, current values,
and lags of the target variables (the arguments of the loss function); see Svensson
(1999), Svensson and Woodford (2005), and Giannoni and Woodford (2010).
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where the matrix M in (32) has been partitioned conformably with
Xt and Ξt−1. Thus, in order to include this optimal instrument rule
in the set of policy rules (7) considered, the predetermined variables
need to be augmented with Ξt−1 and the equations for the pre-
determined variables with (9). For simplicity, the treatment below
does not include this augmentation. Alternatively, below the vector
of predetermined variables could consistently be augmented with
the vector of Lagrange multipliers, so everywhere we would have
(X ′

t, Ξ
′
t−1)

′ instead of Xt, with corresponding augmentation of the
relevant matrices.

The general policy rule can be added to the model equations (1)
to form the new system to be solved. With the notation x̃t ≡ (x′

t, i
′
t)

′,
the new system can be written[

Xt+1

H̃x̃t+1|t

]
= Ã

[
Xt

x̃t

]
+

[
C

0(nx+ni)×nε

]
εt+1, (10)

for t = . . . ,−1, 0, 1, . . ., where

H̃ ≡
[

H 0
Gx Gi

]
, Ã ≡

⎡
⎣A11 A12 B1

A21 A22 B2
fX fx fi

⎤
⎦ ,

and where H̃ is partitioned conformably with xt and it and Ã is
partitioned conformably with Xt, xt, and it.

Then, under the assumption that the policy rule gives rise to the
saddlepoint property (that the number of eigenvalues with modu-
lus greater than unity is equal to the number of non-predetermined
variables), the system can be solved with the Klein (2000) algorithm
or the other algorithms for the solution of linear rational expecta-
tions models mentioned in the introduction. The Klein algorithm
generates the matrices M and F such that the resulting equilibrium
satisfies

Xt+1 = MXt + Cεt+1, (11)

x̃t ≡
[
xt

it

]
= FXt ≡

[
Fx

Fi

]
Xt (12)

for t = . . . ,−1, 0, 1, . . ., where the matrices M and F depend on Ã
and H̃, and thereby on A, B, H, G, and f .



10 International Journal of Central Banking September 2011

In a backward-looking model, the time-invariant instrument rule
depends on the vector of predetermined variables only, since there
are no forward-looking variables, and the vector x̃t is identical to it.

Consider now projections in period t—that is, mean forecasts,
conditional on information available in period t, of future realiza-
tions of the variables. For any stochastic vector process ut, let
ut ≡ {ut+τ,t}∞

τ=0 denote a projection in period t, where ut+τ,t

denotes the mean forecast of the realization of the vector in period
t + τ conditional on information available in period t. We refer to τ
as the horizon of the forecast ut+τ,t.

The projection (Xt, xt, it) in period t is then given by (11) and
(12) when we set the mean of future i.i.d. shocks equal to zero,
εt+τ,t = Etεt+τ = 0 for τ > 0. It then satisfies

Xt+τ,t = MτXt,t, (13)

x̃t+τ,t ≡
[
xt+τ,t

it+τ,t

]
= FXt+τ,t ≡

[
Fx

Fi

]
Xt+τ,t =

[
Fx

Fi

]
MτXt,t, (14)

Xt,t = Xt|t, (15)

for τ ≥ 0, where Xt|t is the estimate of predetermined variables
in period t conditional on information available in the beginning
of period t. Thus, “, t” and “t” in subindices refer to projections
(forecasting) and estimates (“nowcasting” and “backcasting”) in the
beginning of period t, respectively.

3. Projections with Time-Varying Restrictions on the
Policy Rate

The projection of the policy rate it = {it+τ,t}∞
τ=0 in period t is by

(14) given by

it+τ,t = FiM
τXt+τ,t

for τ ≥ 0.8

8The projection of the policy rate and the other variables will satisfy the policy
rule,

Gxxt+τ+1,t + Giit+τ+1,t = fXXt+τ,t + fxxt+τ,t + fiit+τ,t,

for τ ≥ 0.
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Suppose now that we consider imposing restrictions on the policy
rate projection of the form

it+τ,t = ı̄t+τ,t, τ = 0, . . . , T, (16)

where {ı̄t+τ,t}T
τ=0 is a sequence of T+1 given policy rate levels. Alter-

natively, we can have restriction on the real policy rate projection
of the form

rt+τ,t = r̄t+τ,t, τ = 0, . . . , T, (17)

where

rt ≡ it − πt+1|t (18)

is the real policy rate and πt+1|t is expected inflation. With restric-
tions of this kind, the nominal or real policy rate is exogenous for
period t, t + 1, . . . , t + T .

These restrictions are here assumed to be anticipated by both
the central bank and the private sector, in contrast to Leeper and
Zha (2003) where they are anticipated and planned by the central
bank but not anticipated by the private sector. Thus, our case cor-
responds to a situation where the restriction is announced to the
private sector by the central bank and believed by the private sec-
tor, whereas the Leeper and Zha case corresponds to a situation
where the central bank either makes secret plans to implement the
restriction or the restriction is announced but not believed by the
private sector.

The restrictions make the nominal or real policy rate projection
exogenous for the periods t, t + 1, . . . , t + T . We know from Sar-
gent and Wallace (1975) that exogenous interest rates may cause
indeterminacy when there are forward-looking variables. In order to
ensure determinacy, we assume that there is an anticipated switch
in period t + T + 1 to the policy rule (G, f). Then the restrictions
can be implemented by augmenting a stochastic deviation, zt, to the
policy rule (7),

Gxxt+1|t + Giit+1|t = fXXt + fxxt + fiit + zt. (19)

The projection {zt+τ,t}T
τ=0 of the future deviations is then chosen

such that (16) or (17) is satisfied. The projection of the future
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deviation from the horizon T + 1 and beyond is zero, corresponding
to the anticipated shift then to the policy rule (G, f).

More precisely, we let the (T + 1)-vector zt ≡ (zt,t, zt+1,t, . . . ,
zt+T,t)′ (where zt,t = zt) denote a projection of the stochastic vari-
able zt+τ for τ = 0, . . . , T . As in the treatment of central bank
judgment in Svensson (2005), the stochastic variable zt is called the
deviation. In particular, we assume that the deviation is a moving-
average process that satisfies

zt = ηt,t +
T∑

s=1

ηt,t−s

for a given T ≥ 0, where ηt ≡ (η′
t,t, η

′
t+1,t, . . . , η

′
t+T,t)

′ is a zero-mean
i.i.d. random (T +1)-vector realized in the beginning of period t and
called the innovation in period t. For T = 0, we have zt = ηt,t, and
the deviation is a simple i.i.d. disturbance. For T > 0, the deviation
instead follows a moving-average process. Then we have

zt+τ,t+1 = zt+τ,t + ηt+τ,t+1, τ = 1, . . . , T,

zt+T+1,t+1 = ηt+T+1,t+1.

It follows that the dynamics of the deviation and the projection zt

can be written

zt+1 = Azz
t + ηt+1, (20)

where the (T + 1) × (T + 1) matrix Az is defined as

Az ≡
[
0T×1 IT

0 01×T

]
.

Hence, zt is the central bank’s mean projection of current and
future deviations, and ηt can be interpreted as the new information
the central bank receives in the beginning of period t about those
deviations.9

9In Svensson (2005) the deviation zt is an nz-vector of terms entering the
different equations in the model, and the projection zt of future zt deviation is
identified with central bank judgment. The graphs in Svensson (2005) can be seen
as impulse responses to ηt, the new information about future deviations. (The
notation here is slightly different from Svensson 2005 in that there the projection
zt ≡ (zt+1,t, . . . , zt+T,t)′ does not include the current deviation.)
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Combining the model (1) with the augmented policy rule (19)
gives the system[

X̃t+1

H̃x̃t+1|t

]
= Ã

[
X̃t

x̃t

]
+

[
C̃

0(nx+ni)×(nε+T+1)

] [
εt+1
ηt+1,

]
(21)

for t = . . . ,−1, 0, 1, . . ., where

X̃t ≡
[
Xt

zt

]
, x̃t ≡

[
xt

it

]
, H̃ ≡

[
H 0
Gx Gi

]
,

Ã ≡

⎡
⎢⎢⎢⎢⎣

A11 0nX×1 0nX×T A12 B1
0T×nX

0T×1 IT 0T×nx 0T×1
01×nX

0 01×T 01×nx
0

A21 0nx×1 0nx×T A22 B2
fX 1 01×T fx fi

⎤
⎥⎥⎥⎥⎦ ,

C̃ ≡
[

C 0nX×(T+1)
0(T+1)×nε

IT+1

]
.

Under the assumption of the saddlepoint property, the system
of difference equations (21) has a unique solution and there exist
unique matrices M and F such that projection can be written

X̃t+τ,t = Mτ X̃t,t,

x̃t+τ,t = FX̃t+τ,t = FMτ X̃t,t

for τ ≥ 0, where Xt,t in X̃t,t ≡ (X ′
t,t, z

t′)′ is given but the (T + 1)-
vector zt remains to be determined. Its elements are then determined
by the restrictions (16) or (17).

In order to satisfy the restriction (16) on the nominal policy rate,
we note that it can now be written

it+τ,t = FiM
τ

[
Xt,t

zt

]
= ı̄t+τ,t, τ = 0, 1, . . . , T.

This provides T + 1 linear equations for the T + 1 elements of zt.
In order to instead satisfy the restriction (17) on the real policy

rate, we note that inflation expectations in a DSGE model similar
to Ramses generally satisfy
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πt+1|t ≡ ϕx̃t+1|t + Φ
[
X̃t

x̃t

]
(22)

for some vectors ϕ and Φ. These vectors ϕ and Φ are structural, not
reduced-form expressions. For instance, if πt is one of the elements
of xt, the corresponding element of ϕ is unity, all other elements
of ϕ are zero, and Φ ≡ 0. If πt+1|t is one of the elements of x̃t, the
corresponding element of Φ is unity, all other elements of Φ are zero,
and ϕ ≡ 0. Then the restriction (17) can be written

rt+τ,t ≡ it+τ,t − πt+τ+1,t = (Fi − ϕFM − Φ)Mτ

[
Xt,t

zt

]
= r̄t+τ,t, τ = 0, 1, . . . , T.

This again provides T + 1 linear equations for the T + 1 elements of
zt.

When the restriction is on the nominal policy rate, we can
think of the equilibrium as being implemented by the central bank
announcing the nominal policy rate path and the private sector
incorporating this policy rate projection in their expectations, with
the understanding that the policy rate will be set according to the
given policy rule (G, f) from period t + T + 1. When the restric-
tion is on the real policy rate, we need to consider the fact that
in practice central banks set nominal policy rates, not real ones.
The restriction on the real policy rate will result in an endogenously
determined nominal policy rate projection, which together with the
endogenously determined inflation projection will be consistent with
the real policy rate path. We can then think of the equilibrium as
being implemented by the central bank calculating that nominal
policy rate projection and then announcing it to the private sector.

3.1 Backward-Looking Model

In a backward-looking model, the projection of the instrument rule
with the time-varying constraints can be written

it+τ,t = fXXt+τ,t + zt+τ,t, (23)

so it is trivial to determine the projection zt recursively so as to
satisfy the restriction (16) on the nominal policy rate projection.
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Inflation can be written

πt = ΦXt

for some vector Φ, so expected inflation can be written

πt+1|t = ΦXt+1|t = Φ(AXt + Bit). (24)

By combining (23), (24), and (18), it is trivial to determine the pro-
jection zt so as to satisfy the restriction (17) on the real policy rate
projection.

4. Examples

In this section we examine restrictions on the nominal and real pol-
icy rate path for the backward-looking Rudebusch-Svensson model
and the two forward-looking models, the Lindé model and Ramses.
Appendices 2 and 3 provide some details on the Rudebusch-Svensson
and Lindé models. We also show a simulation with Ramses with the
method of modest interventions by Leeper and Zha. Appendix 4
provides some details on the Leeper-Zha method.

4.1 The Rudebusch-Svensson Model

The backward-looking empirical Rudebusch-Svensson (1999) model
has two equations (with estimates rounded to two decimal points):

πt+1 = 0.70 πt − 0.10 πt−1 + 0.28 πt−2 + 0.12 πt−3 + 0.14 yt + επ,t+1,

(25)

yt+1 = 1.16 yt − 0.25 yt−1 − 0.10
(

1
4
Σ3

j=0it−j − 1
4
Σ3

j=0πt−j

)
+ εy,t+1.

(26)

The period is a quarter, πt is quarterly GDP inflation measured
in percentage points at an annual rate, yt is the output gap
measured in percentage points, and it is the quarterly average
of the federal funds rate, measured in percentage points at an
annual rate. All variables are measured as differences from their
means, their steady-state levels. The predetermined variables are
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Xt ≡ (πt, πt−1, πt−2,πt−2, yt, yt−1, it−1, it−2,it−3)′. See appendix 2
for details.

The target variables are inflation, the output gap, and the first
difference of the federal funds rate. The period loss function is

Lt =
1
2
[
π2

t + λyy2
t + λΔi(it − it−1)2

]
, (27)

where πt is measured as the difference from the inflation target,
which is equal to the steady-state level. The discount factor, δ, and
the relative weights on output-gap stabilization, λy, and interest rate
smoothing, λΔi, are set to satisfy δ = 1, λy = 1, and λΔi = 0.2.

For the loss function (27) with the parameters δ = 1, λy = 1,
and λΔi = 0.2, and the case where εt is an i.i.d. shock with zero
mean, the optimal instrument rule is as follows (the coefficients are
rounded to two decimal points):

it = 1.22 πt + 0.43 πt−1 + 0.53 πt−2 + 0.18 πt−3 + 1.93 yt − 0.49 yt−1

+ 0.36 it−1 − 0.09 it−2 − 0.05 it−3.

Figure 1 shows projections for the Rudebusch-Svensson model.
The top row of panels shows projections under the optimal policy,
whereas the bottom row of panels shows projections under a Taylor
rule,

it = 1.5 πt + 0.5 yt,

where the policy rate responds to the predetermined inflation and
output gap with the standard coefficients 1.5 and 0.5, respectively.

The projections start in quarter 0 from the steady state, when
all the predetermined variables are zero. The left column of panels
shows the projections when there is no restriction imposed on the
nominal or real policy rate path. This corresponds to zero projected
deviations zt+τ,t in the optimal instrument rule and the Taylor rule.
These are denoted by circles for the first four quarters, quarters 0–3.
The economy remains in the steady state, and inflation (denoted
by a dashed curve), the output gap (denoted by a dashed-dotted
curve), the nominal policy rate (denoted by a solid curve), and the
real policy rate (denoted by a dotted curve) all remain at zero.
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Figure 1. Projections for Rudebusch-Svensson Model
with Unrestricted and Restricted Nominal and Real

Policy Rate for Optimal Policy (Top Row) and Taylor
Rule (Bottom Row): Four-Quarter Restriction

The middle column shows projections when the nominal policy
rate is restricted to equal 25 basis points for the first four quarters.
For both the optimal policy and the Taylor rule, this requires pos-
itive and (except for quarter 1) increasing time-varying projected
deviations in the instrument rule. The upward shift in quarters 0–
3 in the nominal policy rate path reduces inflation and expected
inflation somewhat, and the real policy rate path shifts up a bit
more than the nominal policy rate path. The increased real policy
rate also reduces the output gap. In the Rudebusch-Svensson model,
inflation is very sluggish and the output gap responds more to the
nominal and real policy rate than inflation. From quarter 4, there
is no restriction on the policy rate path, and according to both the
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optimal policy and the Taylor rule, the nominal and real policy rate
are reduced substantially so as to bring the negative inflation and
output gap eventually back to zero. The optimal policy is more effec-
tive in bringing back inflation and the output gap than the Taylor
rule, which is natural since the Taylor rule is not optimal.

The right column shows projections when the real policy rate is
restricted to equal unity during quarters 0–3. Since there is so lit-
tle movement in inflation and expected inflation, the projections for
these restrictions on the real and the nominal policy rate are very
similar.

Since there are no forward-looking variables in the Rudebusch-
Svensson model, there would be no difference between these pro-
jections with anticipated restrictions on the policy rate path and
simulations with unanticipated shocks as in Leeper and Zha (2003).

4.2 The Lindé Model

The empirical New Keynesian model of the U.S. economy due to
Lindé (2005) also has two equations. We use the following parameter
estimates:

πt = 0.457 πt+1|t + (1 − 0.457)πt−1 + 0.048yt + επt,

yt = 0.425 yt+1|t + (1 − 0.425)yt−1 − 0.156(it − πt+1|t) + εyt.

The period is a quarter, and πt is quarterly GDP inflation measured
in percentage points at an annual rate, yt is the output gap meas-
ured in percentage points, and it is the quarterly average of the fed-
eral funds rate, measured in percentage points at an annual rate.
All variables are measured as differences from their means, their
steady-state levels. The shock εt ≡ (επt, εyt)′ is i.i.d. with mean
zero.

For the loss function (27), the predetermined variables are Xt ≡
(επt, εyt, πt−1, yt−1, it−1)′ (the lagged policy rate enters because it
enters into the loss function, and the two shocks are included among
the predetermined variables in order to write the model on the
form (1) with no shocks in the equations for the forward-looking
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variables). The forward-looking variables are xt ≡ (πt, yt)′. See
appendix 3 for details.10

For the loss function (27) with the parameters δ = 1, λy = 1,
and λΔi = 0.2, the optimal policy function (8) is as follows (the
coefficients are rounded to two decimal points):

it = 1.06 επt + 1.38 εyt + 0.58 πt−1 + 0.78 yt−1 + 0.40 it−1

+ 0.02 Ξπ,t−1,t−1 + 0.20 Ξy,t−1,t−1,

where Ξπ,t−1,t−1 and Ξy,t−1,t−1 are the Lagrange multipliers for the
two equations for the forward-looking variables in the decision prob-
lem in period t − 1 (see appendix 1). The difference equation (9) for
the Lagrange multipliers is

[
Ξπt

Ξyt

]
=

[
10.20 0.74 5.54 0.43 −0.21
0.74 1.48 0.40 0.85 −0.28

]
⎡
⎢⎢⎢⎢⎣

επt

εyt

πt−1
yt−1
it−1

⎤
⎥⎥⎥⎥⎦

+
[
0.72 0.16
0.03 0.38

] [
Ξπ,t−1
Ξy,t−1

]
.

We also examine the projections for a Taylor rule for which the
policy rate responds to current inflation and the output gap,

it = 1.5 πt + 0.5 yt.

Figure 2 shows projections for the optimal policy (top row) and
Taylor rule (bottom row) when there is a restriction to equal 25 basis
points for quarters 0–3 for the nominal policy rate (middle column)
and the real policy rate (right column). In the middle column, we
see that a restriction to a 25-basis-points-higher nominal policy rate
reduces inflation and inflation expectations so the projection of the

10It is arguably unrealistic to consider inflation and output in the current quar-
ter as forward-looking variables. Alternatively, current inflation and the output
gap could be treated as predetermined, and one-quarter-ahead plans for inflation,
the output gap, and the policy rate could be determined by the model above.
Such a variant of the New Keynesian model is used in Svensson and Woodford
(2005).
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Figure 2. Projections for the Lindé Model with
Unrestricted and Restricted Nominal and Real Policy
Rate for Optimal Policy (Top Row) and Taylor Rule

(Bottom Row): Four-Quarter Restriction

real policy rate is above 25 basis points and higher than the policy
rate for the first four quarters. In line with this, in the right column,
the restriction on the real policy rate reduces inflation and inflation
expectations so the corresponding nominal policy rate projection is
below 25 basis points. We note that these restrictions require pos-
itive and rising time-varying projected deviations (denoted by the
circles). The magnitude of the projected deviations is larger than
those in figure 1 for the Rudebusch-Svensson model. Using the mag-
nitude of the projected deviations as indicating the severity of the
restriction, we conclude that the restriction to nominal or real policy
rates equal to unity is more severe in the Lindé model.
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Figure 3. Projections for Ramses with Anticipated
Unrestricted and Restricted Nominal and Real Policy

Rate (Top Row) and Unanticipated Restrictions on the
Nominal Policy Rate (Bottom Row): Four-Quarter

Restriction

Because inflation is more sensitive to movements in the real pol-
icy rate in the Lindé model than in the Rudebusch-Svensson model,
there is a greater difference between restrictions on the nominal and
the real policy rate. Also, from quarter 4, when there is no restric-
tion on the policy rate, a fall in the real and nominal policy rate,
according to both the optimal policy and the Taylor rule, more eas-
ily stabilizes inflation and the output gap back to the steady state
than in the Rudebusch-Svensson model.

4.3 Ramses

Adolfson et al. (2011) provide more details on Ramses, including the
elements of the vectors Xt, xt, it, and εt. Figure 3 shows projections
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with Ramses for the estimated instrument rule. The top row shows
the result of restrictions on the nominal and real policy rate to equal
25 basis points for four quarters, quarters 0–3. We see that there is
a substantial difference between restrictions on the nominal and the
real policy rate, since inflation is quite sensitive to the real policy
rate in Ramses. In the top-middle panel, we see that a restriction
on the nominal policy rate projection to equal 25 basis points for
quarters 0–3 corresponds to a very high and falling real policy rate
projection. In the top-right panel we see that the restriction on the
real policy rate to equal 25 basis points for quarters 0–3 corresponds
to a nominal policy rate projection quite a bit below the real policy
rate.

The bottom panel of figure 3 shows the result of a projection
with the Leeper-Zha method of modest interventions to implement
a restriction on the nominal policy rate to equal 25 basis points
for quarters 0–3. There, positive unanticipated shocks (denoted by
circles) are added to the estimated instrument rule to achieve the
restriction on the nominal policy rate. Comparing the bottom panel
with the top-right panel, we see that the impact on inflation, the out-
put gap, and the real interest rate is smaller for the unanticipated
shocks in the Leeper-Zha method than for the anticipated projected
deviations in our method.

4.4 Unusual Equilibria

If restrictions are imposed on the nominal policy rate for many peri-
ods, “unusual” equilibria can occur. We can illustrate this for Ram-
ses in figure 4, where in the top-middle panel the nominal policy
rate is restricted to equal 25 basis points for nine quarters, quarters
0–8. This is a very contractionary policy, which shows in inflation
and inflation expectations falling very much and the real policy rate
becoming very high. (Note that the scale varies from panel to panel
in figure 4.) If we look at the top-right panel, where the real pol-
icy rate is restricted to equal 25 basis points for nine quarters, we
see that inflation and inflation expectations fall so much that the
nominal policy rate becomes negative in quarter 0 (relative to when
there is no restriction) and then rises to become positive only in
quarters 7 and 8. We realize that if inflation and inflation expecta-
tions respond so much that nominal and real policy rates move in
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Figure 4. Projections for Ramses with Anticipated
Unrestricted and Restricted Nominal and Real Policy

Rate (Top Row) and Unanticipated Restrictions on the
Nominal Policy Rate (Bottom Row): Nine-Quarter

Restriction

opposite directions, some unusual equilibria may arise. This is con-
firmed in figure 5, where in the top-middle panel the nominal policy
rate is restricted at 25 basis points for one more quarter, quarter
9. We see that then there is no longer an equilibrium where the
real policy rate is positive and high. Instead the equilibrium is such
that the real policy rate is negative, policy is very expansionary, and
inflation and inflation expectations are high.

This phenomenon of unusual equilibria clearly requires that infla-
tion and inflation expectations are quite sensitive to the real policy
rate so that for multiple-period restrictions the nominal and real
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Figure 5. Projections for Ramses with Anticipated
Unrestricted and Restricted Nominal and Real Policy

Rate (Top Row) and Unanticipated Restrictions on the
Nominal Policy Rate (Bottom Row): Ten-Quarter

Restriction

policy rates move in opposite directions. It requires as much as
around ten-quarter restrictions to occur in Ramses. In the Lindé
model, inflation is more sensitive to the real policy rate, so there it
can occur already at six-quarter restrictions. We have not observed
the phenomenon in the Rudebusch-Svensson model even for very
long restrictions.

The phenomenon implies that restrictions for many quarters
should be avoided in models where inflation and inflation expec-
tations are sufficiently sensitive to the real policy rate.
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5. Conclusions

We have presented a new convenient way to construct projections
conditional on alternative anticipated policy rate paths in linearized
dynamic stochastic general equilibrium (DSGE) models, such as
Ramses, the Riksbank’s main DSGE model. The main idea is to
include the anticipated future time-varying deviations from a policy
rule in the vector of predetermined variables, the “state” of the econ-
omy. This allows the formulation of the linear(ized) model on a stan-
dard state-space form, the application of standard algorithms for the
solution of linear rational expectations models, and a recursive repre-
sentation of the equilibrium projections. Projections for anticipated
policy rate paths are especially relevant for central banks—such as
the Reserve Bank of New Zealand, Norges Bank, the Riksbank, and
the Czech National Bank—that publish a policy rate path, but they
are also relevant for the discussion of the kind of “forward guidance”
recently given by the Federal Reserve and Bank of Canada.

From the examples in this paper, we have seen that in a model
without forward-looking variables such as the empirical model of the
U.S. economy by Rudebusch and Svensson (1999), there is no differ-
ence between policy simulations with anticipated and unanticipated
restrictions on the policy rate path. In a model with forward-looking
variables, such as Ramses or the empirical New Keynesian model of
the U.S. economy by Lindé (2005), there is such a difference, and
the impact of anticipated deviations from a policy rule will gener-
ally be larger than that of unanticipated deviations. In a model with
forward-looking variables, exogenous restrictions on the policy rate
path are consistent with a unique equilibrium, if there is an antici-
pated switch to a well-behaved policy rule in the future. For given
restrictions on the policy rate path, the equilibrium depends on that
policy rule.

Furthermore, our analysis shows that if inflation is sufficiently
sensitive to the real policy rate, “unusual” equilibria may result
from restrictions on the nominal policy rate for sufficiently many
periods. Such cases have the property that nominal and real pol-
icy rates move in opposite directions and nominal policy rates and
inflation (expectations) move in the same direction. This phenome-
non implies that restrictions on nominal policy rates for too many
periods should be avoided.
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Appendix 1. Optimal Policy

Let Yt be an nY -vector of target variables, measured as the differ-
ence from an nY -vector Y ∗ of target levels. This is not restrictive, as
long as we keep the target levels time invariant. If we would like to
examine the consequences of different target levels, we can instead
interpret Yt as the absolute level of the target levels and replace Yt

with Yt −Y ∗ everywhere below. We assume that the target variables
can be written as a linear function of the predetermined variables,
the forward-looking variables, and the instruments,

Yt = D

⎡
⎣Xt

xt

it

⎤
⎦ ≡ [DX Dx Di]

⎡
⎣Xt

xt

it

⎤
⎦ , (28)

where D is an nY × (nX + nx + ni) matrix and partitioned con-
formably with Xt, xt, and it.

Let the intertemporal loss function in period t be

Et

∞∑
τ=0

δτLt+τ , (29)

where 0 < δ < 1 is a discount factor, Lt is the period loss given by

Lt ≡ Y ′
t ΛYt, (30)

and Λ is a symmetric positive semi-definite matrix containing the
weights on the individual target variables.11

Optimization under commitment in a timeless perspective
(Woodford 2003), combined with the model equations (1), results in
a system of difference equations (see Söderlind 1999 and Svensson
2009). The system of difference equations can be solved with sev-
eral alternative algorithms—for instance, those developed by Klein
(2000) and Sims (2000) or the AIM algorithm of Anderson and
Moore (1983, 1985) (see Svensson 2005, 2009 for details of the deriva-
tion and the application of the Klein algorithm). The equilibrium

11For plotting and other purposes, and to avoid unnecessary separate program
code, it is convenient to expand the vector Yt to include a number of variables
of interest that are not necessary target variables or potential target variables.
These will then have zero weight in the loss function.
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under optimal policy under commitment can be described by the
following difference equation:[

xt

it

]
=

[
Fx

Fi

] [
Xt

Ξt−1

]
, (31)[

Xt+1
Ξt

]
= M

[
Xt

Ξt−1

]
+

[
C
0

]
εt+1. (32)

The Klein algorithm returns the matrices Fx, Fi, and M . The sub-
matrix Fi in (32) represents the optimal instrument rule,

it = Fi

[
Xt

Ξt−1

]
. (33)

These matrices depend on A, B, H, D, Λ, and δ, but they are inde-
pendent of C. That they are independent of C demonstrates the cer-
tainty equivalence of optimal projections (the certainty equivalence
that holds when the model is linear, the loss function is quadratic,
and the shocks and the uncertainty are additive); only probability
means of current and future variables are needed to determine opti-
mal policy and the optimal projection. The nx-vector Ξt consists of
the Lagrange multipliers of the lower block of (1), the block deter-
mining the projection of the forward-looking variables. The initial
value for Ξt−1 is discussed in Adolfson et al. (2011).

In a backward-looking model—that is, a model without forward-
looking variables—there is no vector xt of forward-looking variables,
no lower block of equations in (1), no Lagrange multiplier Ξt, and
the vector of target variables Yt only depends on the vector of pre-
determined variables Xt and the (vector of) instrument(s) it.

Appendix 2. The Rudebusch-Svensson Model: An
Empirical Backward-Looking Model

The two equations of the model of Rudebusch and Svensson (1999)
are

πt+1 = απ1πt + απ2πt−1 + απ3πt−2 + απ4πt−3 + αyyt + zπ,t+1

(34)
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yt+1 = βy1yt + βy2yt−1 − βr

(
1
4
Σ3

j=0it−j − 1
4
Σ3

j=0πt−j

)
+ zy,t+1,

(35)

where πt is quarterly inflation in the GDP chain-weighted price index
(Pt) in percentage points at an annual rate, i.e., 400(lnPt − lnPt−1);
it is the quarterly average federal funds rate in percentage points
at an annual rate; and yt is the relative gap between actual real
GDP (Qt) and potential GDP (Q∗

t ) in percentage points, i.e.,
100(Qt − Q∗

t )/Q∗
t . These five variables were demeaned prior to esti-

mation, so no constants appear in the equations.
The estimated parameters, using the sample period 1961:Q1 to

1996:Q2, are shown in table 1.

Table 1. Estimated Parameters, Rudebusch-Svensson
Model

απ1 απ2 απ3 απ4 αy βy1 βy2 βr

0.70 −0.10 0.28 0.12 0.14 1.16 −0.25 0.10
(0.08) (0.10) (0.10) (0.08) (0.03) (0.08) (0.08) (0.03)

The hypothesis that the sum of the lag coefficients of inflation
equals one has a p-value of .16, so this restriction was imposed in
the estimation.

The state-space form can be written⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

πt+1

πt

πt−1

πt−2

yt+1

yt

it
it−1

it−2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑4
j=1 απjej + αye5

e1

e2

e3

βre1:4 + βy1e5 + βy2e6 − βre7:9

e5

e0

e7

e8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

πt

πt−1

πt−2

πt−3

yt

yt−1

it−1

it−2

it−3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0

−βr

4
0
1
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

it+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

zπ,t+1

0
0
0

zy,t+1

0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where ej (j = 0, 1, . . . , 9) denotes a 1×9 row vector, for j = 0 with
all elements equal to zero, for j = 1, . . . , 9 with element j equal to
unity and all other elements equal to zero; and where ej:k (j < k)
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denotes a 1×9 row vector with elements j, j + 1, . . . , k equal to 1
4

and all other elements equal to zero. The predetermined variables
are πt, πt−1, πt−2, πt−3, yt, yt−1, it−1, it−2, it−2, and it−3. There
are no forward-looking variables.

For a loss function (27) with δ = 1, λ = 1, and ν = 0.2, and the
case where zt is an i.i.d. zero-mean shock, the optimal instrument
rule is as follows (the coefficients are rounded to two decimal points):

it = 1.22 πt + 0.43 πt−1 + 0.53 πt−2 + 0.18 πt−3 + 1.93 yt − 0.49 yt−1

+ 0.36 it−1 − 0.09 it−2 − 0.05 it−3.

Appendix 3. The Lindé Model: An Empirical New
Keynesian Model

An empirical New Keynesian model estimated by Lindé (2005) is

πt = ωfπt+1|t + (1 − ωf )πt−1 + γyt + επt,

yt = βfyt+1|t + (1 − βf )(βy1yt−1 + βy2yt−2 + βy3yt−3 + βy4yt−4)

− βr(it − πt+1|t) + εyt,

where the restriction
∑4

j=1 βyj = 1 is imposed and εt ≡ (επt, εyt)′ is
an i.i.d. shock with mean zero. The estimated parameters (table 6a
in Lindé 2005, non-farm business output) are shown in table 2.

Table 2. Estimated Parameters, Lindé Model

ωf γ βf βr βy1 βy2 βy3

0.457 0.048 0.425 0.156 1.310 −0.229 −0.011
(0.065) (0.007) (0.027) (0.016) (0.174) (0.279) (0.037)

For simplicity, we set βy1 = 1, βy2 = βy3 = βy4 = 0. Then the
state-space form can be written as
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

επ,t+1

εy,t+1

πt

yt

it

ωfπt+1|t

βrπt+1|t + βfyt+1|t

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0

−1 0 −(1 − ωf ) 0 0 1 −γ

0 −1 0 −(1 − βf ) 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

επt

εyt

πt−1

yt−1

it−1

πt

yt

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
1
0
βr

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

it +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

επ,t+1

εy,t+1

0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The predetermined variables are επt, εyt, πt−1, yt−1, and it−1, and
the forward-looking variables are πt and yt.

For a loss function (27) with δ = 1, λy = 1, and λΔi = 0.2, and
the case where εt is an i.i.d. zero-mean shock, the optimal instru-
ment rule is as follows (the coefficients are rounded to two decimal
points):

it = 1.06 επt + 1.38 εyt + 0.58 πt−1 + 0.78 yt−1 + 0.40 it−1

+ 0.02 Ξπ,t−1,t−1 + 0.20 Ξy,t−1,t−1,

where Ξπ,t−1,t−1 and Ξy,t−1,t−1 are the Lagrange multipliers for the
two equations for the forward-looking variables in the decision prob-
lem in period t − 1. The difference equation (9) for the Lagrange
multipliers is

[
Ξπt

Ξyt

]
=

[
10.20 0.74 5.54 0.43 −0.21
0.74 1.48 0.40 0.85 −0.28

]
⎡
⎢⎢⎢⎢⎣

επt

εyt

πt−1
yt−1
it−1

⎤
⎥⎥⎥⎥⎦

+
[
0.72 0.16
0.03 0.38

] [
Ξπ,t−1
Ξy,t−1

]
.
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Appendix 4. Unanticipated Policy Rate Shocks: “Modest
Interventions” as in Leeper and Zha (2003)

The method of “modest interventions” of Leeper and Zha (2003) can
be interpreted as generating central bank projections that satisfy the
restriction on the policy rate by adding a sequence of additive shocks
to the instrument rule. These planned shocks are unanticipated by
the private sector.

In order to illustrate the Leeper and Zha (2003) method of mod-
est interventions, we set T = 0, in which case

zt = ηt,t

and the deviation is a simple zero-mean i.i.d. disturbance. We can
then write the projection model as perceived by the private sector
as [

X̃t+τ+1,t

H̃x̃t+τ+1,t

]
= Ã

[
X̃t+τ,t

x̃t+τ,t

]
(36)

for τ ≥ 0, where

X̃t ≡
[
Xt

zt

]
, x̃t ≡

[
xt

it

]
, H̃ ≡

[
H 0
Gx Gi

]
,

Ã ≡

⎡
⎢⎢⎣

A11 0nX×1 A12 B1
01×nX

01×1 01×nx 01×1
A21 0nx×1 A22 B2
fX 1 fx fi

⎤
⎥⎥⎦ .

The solution to this system can be written[
Xp

t+τ,t

0

]
= Mτ X̃t,t,

x̃p
t+τ,t ≡

[
xp

t+τ,t

ipt+τ,t

]
= F

[
Xp

t+τ,t

0

]
=

[
Fx

Fi

]
Mτ X̃t,t

for τ ≥ 0, where the superscript p denotes that this is the projection
believed by the private sector in period t.

Let us demonstrate the method of modest interventions only for
the restriction (16). The central bank plans to satisfy this restriction
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by a sequence of shocks {η̃t+τ,t}T
τ=0 that are unanticipated by the

private sector. These shocks are chosen such that η̃t,t satisfies

it,t = Fi

[
Xt,t

η̃t,t

]
= ı̄t,t.

Then the projection of the current forward-looking variables is
given by

xt,t = Fx

[
Xt,t

η̃t,t

]
.

For τ = 1, . . . , T , the projection of the predetermined variables is
then given by

[
Xt+τ,t

0

]
= M

[
Xt+τ−1,t

η̃t+τ−1,t

]
,

the shock η̃t+τ,t is chosen to satisfy

it+τ,t = Fi

[
Xt+τ,t

η̃t+τ,t

]
= ı̄t+τ,t,

and the projection of the forward-looking variables is given by

xt+τ,t = Fx

[
Xt+τ,t

η̃t+τ,t

]
.

There are some conceptual difficulties in a central bank announc-
ing such a policy rate path and projection to the private sector. The
projection is only relevant if the private sector does not believe that
the central bank will actually implement the path but instead follow
the instrument rule with zero expected shocks to the instrument rule.
The method of modest interventions is instead perhaps more appro-
priate for secret policy simulations and plans that are not announced
to the private sector, or for a situation when the announced policy
rate path is not credible and the private sector is surprised each
period when the path is implemented.
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