Flexible inflation targeting: Principles and possible improvements

Lars E.O. Svensson
Princeton University

Presentation at Norges Bank, March 25, 2004

Principles for flexible inflation targeting

- Principles simple; practice complicated
- Objective:
 - Inflation target, inflation stability
 - Output-gap stability (*flexible* IT)
 - Intertemporal loss function

1. Lags: Forecast targeting
 - Find instrument-rate path/plan such that projections of inflation and output gap “look good”
 - Current state of the economy
 - View of transmission mechanism
 - Projections of inflation and output gap conditional on alternative instrument-rate plans
 - Find optimal instrument-rate plan: Instrument-rate path that results in optimal inflation and output-gap projections

2. Announce projections and implement instrument path
- Transparency (press releases, minutes, inflation reports, strategy notes)
 - Accountability (democracy)
 - Incentives for CB
 - Efficient implementation: Management of expectations

3. Management of expectations
 - Expectations of future interest rates
 - Inflation expectations
 - Output expectations
 - Effective implementation of monetary policy
 - Better private-sector decisions

4. Forecast targeting implies appropriate response to shocks
 - Signal extraction
 - Filter through forecast
 - Respond accordingly
Possible improvements

• International best practice
 – Reserve Bank of New Zealand, Bank of England, Sweden’s Riksbank
 – Norges Bank?

• Several substantial improvements implemented. What remains?
 • Explicit intertemporal loss function
 \[L_t = E_t \sum_{\tau=0}^{\infty} (1 - \delta)^\tau l_{t+\tau} \]
 Period loss function
 \[l_t = (\pi_t - \pi^*)^2 + \lambda(y_t - \bar{y}_t)^2 \]
 For \(\delta \approx 1 \)
 \[L_t \approx (E[\pi_t] - \pi^*)^2 + \text{Var}[\pi_t] + \lambda \text{Var}[y_t - \bar{y}_t] \]
 Parameters?
 – \(\pi^* \)
 – \(\delta \approx 1 \)
 – \(\lambda \)
 Decide and go public
 Interpretation clear and understandable

• Abandon assumption of constant interest rate
 Implemented: ahead of Bank of England and Riksbank

• Reference interest-rate path, reference projection: guide policy decision
 – Market expectations (now)
 – Not necessarily best forecast

• Optimal interest-rate path, optimal projection and best forecast
 – Best forecast of future interest rate
 – Best forecasts of future inflation and output gap

• Reduce emphasis on specific 2-year horizon
 – Too rigid, not optimal; horizon depends
 – Look at whole projection of inflation and output gap

• Potential output, natural (neutral) interest rate
 – Output gap
 * Potential output: Flexprice output
 Depends on shocks, not trend output
 – Interest-rate gap
 * Natural/neutral interest rate: Flexprice natural interest rate
 Depends on shocks, not average real interest rate

• Exchange rate
 – How to respond to exchange-rate movements?
 – Exchange rate as target?
• How to respond to exchange-rate movements?
 — Forecast targeting implies appropriate response to shocks
 * Signal extraction:
 What shock moved the exchange rate?
 * Filter through inflation and output-gap forecasts:
 How does the shock affect inflation and output-gap forecasts?
 * Respond accordingly

• Exchange-rate stability as target?
 Loss function alternatives
 \[L_t = E_t \sum_{\tau=0}^{\infty} (1 - \delta)^\tau l_{t+\tau} \]
 \[l_t = (\pi_t - \pi^*)^2 + \lambda(y_t - \bar{y}_t)^2 + ... \]
 — Additional terms
 Exchange-rate smoothing \((s_t, q_t)\) nominal, \((q_t, r_t)\) real (log) exchange rate
 \[\lambda_s(s_t - s_{t-1})^2 \]
 \[\lambda_s(q_t - q_{t-1})^2 \]
 Real-exchange rate stability
 \[\lambda_q(q_t - \bar{q}_t)^2 \]
 Separate traded/nontraded output-gap stability
 \[\lambda_T(y_t^T - \bar{y}_t^T)^2 + \lambda_N(y_t^N - \bar{y}_t^N)^2 \]

• Sterilized interventions?
 — Discussed by Riksbank, RBNZ
 — Leitemo: Sterilized interventions in the direction of uncovered interest parity
 \[\tilde{s}_t = \tilde{s}_{t+1|t} = (\lambda_t - \lambda_t^*) + \varphi_t \]
 \[= \tilde{s}_{t+T|t} - \sum_{\tau=0}^{T-1} (\lambda_{t+\tau|t} - \lambda_{t+\tau|t}^*) + \sum_{\tau=0}^{T-1} \varphi_{t+\tau|t} \]
 \[\approx \tilde{q}_{t+T|t} + p_{t+T|t} - (\lambda_{t+T|t} - \lambda_{t+T|t}^*) - \sum_{\tau=0}^{T-1} (\lambda_{t+\tau|t} - \lambda_{t+\tau|t}^*) + \sum_{\tau=0}^{T-1} \varphi_{t+\tau|t} \]
 Additional loss
 \[\lambda_s(\tilde{s}_t - \tilde{s}_t^*)^2 \]
 * Informational requirements?
 \[\varphi_t = 0? \]
 * Effective?
 Sterilized interventions at best small short-term effects

Conclusions
• Flexible inflation targeting great
• Norges Bank in the top league
• Still room for some improvements