SmWo301.tex

Frank Smets and Raf Wouters Output Gaps: Theory versus Practice ASSA 2003

Comments by Lars E.O. Svensson www.princeton.edu/~svensson

• Issue

- Cost-push shock (C) or potential-output shock (P)?
- Optimization under discretion
- CB assumes either C or P
- Min max unconditional loss
- Result: Assume P
 - Better the more persistent the shock
 - $-\operatorname{If}$ both transitory and persistent shocks: Assume persistent shock is P
 - Use low-frequency filter to estimate potential output
- Alternative models
 - $-\operatorname{Simple}$ New Keynesian
 - Estimated simple Euro area model
 - Estimated DSGE Euro area model

2

\bullet Intuition?

- Optimization under discretion: Distortions
 - * Average inflation bias (if average output target \neq average potential output): Not relevant here
 - * Conditional inflation bias (persistent deviations from target, if persistent shocks) (Svensson AER 97)
 - * Stabilization bias (suboptimal response to unanticipated shocks)
 - * Lack of history-dependence (Woodford)
- Assuming P eliminates/reduces conditional inflation bias (w/o output gap deviating from optimal too much?)

Comment

- One can do better: Implement optimal policy under commitment, even w/o commitment to optimal instrument rule (Svensson JEL)
 - Implement optimal targeting rule (Svensson, Svensson-Woodford, Giovanni-Woodford)
- Certainty equivalence (Svensson-Woodford)
- Separation principle: Optimization and estimation separate (Svensson-Woodford)

:

4

ullet Example: Simple New Keynesian model: \bar{y}_t unobservable

$$\pi_t = \beta \pi_{t+1|t} + \kappa (y_t - \bar{y}_t) + (u_t + \kappa \bar{y}_t)$$
$$L_{t|t} = \mathcal{E}_t \left[\pi_t^2 + \lambda (y_t - \bar{y}_t)^2 \right]$$

• Optimal targeting rule

$$\pi_t + \frac{\lambda}{\kappa} [(y_t - \bar{y}_{t|t}) - (y_{t-1} - \bar{y}_{t-1|t-1})] = 0$$

 $\bar{y}_{t|t} \equiv E_t \bar{y}_t$, best estimate (Kalman filter)

Robust to additive shocks/add factors/judgment (Svensson JEL) $\,$

Implements optimal policy under commitment

5

- Implement in alternative ways: Commitment to alternative loss functions, optimization under discretion
 - Targeting rule equivalent to quadratic loss function

$$\tilde{L}_t = \{ \pi_t + \frac{\lambda}{\kappa} [(y_t - \bar{y}_{t|t}) - (y_{t-1} - \bar{y}_{t-1|t-1})] \}^2$$

Optimization under discretion results in optimal targeting rule

- Commitment to "continuity and predictability" (Svensson-Woodford)

$$\mathbb{E}_{t} \sum_{\tau=0}^{\infty} \beta^{\tau} \left[\pi_{t}^{2} + \lambda (y_{t} - \bar{y}_{t})^{2} \right] + \Xi_{t,t-1} (\pi_{t} - \pi_{t|t-1})$$

 $\Xi_{t,t-1}$ is Lagrange multiplier of Phillips curve from decision in period t-1

Optimization under discretion results in optimal targeting rule

6

- \bullet Example: Simple Euro-area model
 - Optimal targeting rule still simple (especially if $\lambda_r = 0$)
 - Numerical implementation always possible
- Example: Estimated DSGE Euro area model
 - Numerical implementation possible
 - Staff shows graphs to decision makers