SibertOH.texl

Discussion of Anne Sibert, "Monetary policy with uncertain central bank preferences"

by Lars E.O. Svensson

- Elegant and thorough analysis of the effect of unobservable central bank preferences
- Questionable model and assumptions
 - Loss function
 - Finite horizon
 - Separating equilibria
- More relevant models and assumptions available

 \bullet Loss function: Linear in output

$$\begin{split} L_t &= \frac{1}{2} (\pi_t - \pi^*)^2 + \chi y_t \\ &= \frac{1}{2} (\pi_t - \pi^*)^2 + \chi (\pi_t - \pi_t^e) \varepsilon_t \end{split}$$

- Indifferent to output variability (counterfactual)
- More output always better, constant marginal benefit (counterfactual?)
- Always average inflation bias (when $\chi > 0$) (counterfactual)

$$\pi_t = \pi^* + \chi$$

– Equilibrium inflation independent of (current) π^e_t (credibility) (counterfactual?)

2

• Better: Quadratic

$$L_t = \frac{1}{2}[(\pi_t - \pi^*)^2 + \chi(y_t - y_t^*)^2]$$

- Output (gap) variability matters
- Finite optimal output level, y_t^* (potential or above)
- Cost symmetric around π^* , y_t^* (2nd order Taylor approximation)
- Average inflation bias only when $E[y_t^*] > E[potential output]$
- Equilibrium inflation depends on (current) π_t^e /credibility/reputation
- More "conservative"
 - Lower χ ("Flexible": $\chi>0)$
 - -Lower π^*
 - Lower y_t^* (default: equal to potential)

 \bullet Horizon, finite or infinite. Unobservable CB preferences, constant or time-varying

- Backus-Driffill 1985, Vickers 1986, finite horizon, constant unobservable CB preferences
 - * Dynamics of equilibria depend on time to end (counterfactual)
 - * Sibert 2001, also changing preferences
- Cukierman-Meltzer 1986, infinite horizon, time-varying unobservable CB preferences
- * Stochastic steady state
- * Loss function linear in output
- * Confusion of control/observation errors
- * Faust-Svensson 2001
 - \cdot Loss function quadratic in output
 - \cdot Distinguish control/observation errors.
 - \cdot Dynamics of inflation, output, credibility, reputation
 - \cdot Transparency as a commitment mechanism

4

 \bullet Loss function with unobservable time-varying preferences

$$L_t = \frac{1}{2} [(\pi_t - \pi^*)^2 + \chi (y_t - y_t^*)^2]$$

$$y_t^* = y^* + z_t$$

- Lack of "credibility" $\equiv |\pi_{t|t-1} \pi^*|$
- CB "type" $\equiv z_t$
- "Reputation" $\equiv z_{t|t-1}$
- "Signalling"
- Estimation error $\equiv z_t z_{t|t-1}$
- Imperfect control: $\pi_t = \overrightarrow{\mathrm{CB}}$ intention + control error
- "Transparency": Fraction of control error observable by private sector, observability of CB intention, inference of type
- Commitment mechanism: Increased transparency makes reputation more sensitive to actions

 \bullet Separating equilibria

- Observe outcome, infer CB type
- Counter to p. 8, fn. 6, not enough to observe action (instrument setting)
- Observing action not enough to infer intention
- $-\operatorname{In}$ the real world, CB type not precisely known
- Increased transparency implies increased observability of CB intentions

6