Maurice Obstfeld, Jay C. Shambaugh and Alan M. Taylor

The Trilemma in History: Tradeoffs among Exchange Rates, Monetary Policies, and Capital Mobility

Discussion by Lars E.O. Svensson www.princeton.edu/~svensson

Trilemma

- Fixed exchange rate
- Free capital mobility
- Monetary "autonomy"

Method

- Gold Standard, Bretton Woods, post Bretton Woods
- Short interest rates, peg/float (de jure, de facto), capital/controls
- Regression 1

$$\Delta R_{it} = \alpha + \beta \Delta R_{bit} + u_{it}$$

Interpretation:

- High β , high R^2 = Low autonomy
- Regression 2 (Pesaran-Shin-Smith, 2001:

$$\Delta R_{it} = \alpha + \beta \Delta R_{bit} + \theta(c + R_{i,t-1} - \gamma R_{bi,t-1}) + \text{lags} + u_{it}$$

Interpretation

- High γ , high θ = Low autonomy

- Interest rates I(0) or I(1)?
 - -Stationary: Between 0 and 10% 200 yrs ago, as now
 - Small sample problem: If not reject unit root, better estimates if assume I(1)

Main results

- Gold Standard
 - Peg, low autonomy, but $\beta < 1$
 - Float, high autonomy
- Bretton Woods
 - Peg, high autonomy (capital controls)
- Post Bretton Woods
 - Peg, low autonomy
 - Float, intermediate autonomy
 - Lower R^2 than Gold Standard
- Capital controls: Higher autonomy

Comments

- Why lower R^2 in post Bretton Woods?
 - Lower and varying credibility credibility of pegs induce variation in interest-rate differentials
- "Autonomy"?
 - A "float" is an unspecified monetary-policy regime! Say "non-peg" instead of "float"
 - Correlation between R_{it} and R_{ibt} (and variability of exchange rate) depends on monetary-policy regime (objectives, loss function)!
 - Problem for "fear of floating" (Calvo-Reinhart) and classification of "exchange-rate regimes" (Reinhart-Rogoff)
- Correlation R_{it} , R_{bit} somewhat imperfect indicator of lack of "autonomy"

• Free capital mobility, exchange rate band

$$R_{t} - R_{t}^{*} = s_{t+1|t} - s_{t} + \rho_{t}$$

$$c_{t} - a \leq s_{t} \leq c_{t} + a$$

$$s_{t} \equiv c_{t} + x_{t}$$

$$R_{t} - R_{t}^{*} = (c_{t+1|t} - c_{t}) + (x_{t+1|t} - x_{t}) + \rho_{t}$$

$$- a \leq x_{t} \leq a$$

 $c_{t+1|t} - c_t$ expected rate of realignment (per period) $x_{t+1|t} - x_t$ expected rate of depreciation within band

- Credible exchange rate band: $c_{t+1|t} - c_t = 0$

$$R_t - R_t^* = x_{t+1|t} - x_t + \rho_t$$

High β

- Imperfect credibility, variability of $c_{t+1|t} c_t$, lower β
- Compare ERM, Rose-Svensson drift-adjustment method, Svensson (*EER* 1993) on ERM
- Imperfect credibility of peg reduces correlation R_t, R_t^* , lowers β

Fig. 1a. BF/DM log exchange rate. Fig. 1b. DK/DM log exchange rate. Fig. 1c. FF/DM log exchange rate. Fig. 1d. IL/DM log exchange rate. 50 40 30 Fig. 1e. IP/DM log exchange rate. 63 84 85 86 87 88 Fig. 1f. NG/DM log exchange rate.

Fig. 1

Fig. 2a. BF/DM interest rate differential: 3 months.

Fig. 2a. BF/DM interest rate differential: 3 months.

Fig. 2b. DK/DM interest rare differential: 3 months.

Fig. 2

Fig. 4a. BF/DM expected rate of depreciation within band (95% conf.i.): 3 months.

Fig. 4b. DK/DM expected rate of depreciation within band (95% conf.i.): 3 months.

Fig. 4c. FF/DM expected rate of depreciation within band (95% conf.i.): 3 months.

Fig. 4d. IL/DM expected rate of depreciation within band (95% conf.i.): 3 months.

Fig. 4e. IP/DM expected rate of depreciation within band (95% conf.i.): 3 months.

Fig. 4f. NG/DM expected rate of depreciation within band (95% conf.i.): 3 months.

Fig. 4

Fig. 8a. BF/DM expected rate of devaluation (95% conf.i.): 3 months.

Fig. 8b. DK/DM expected rate of devaluation (95% conf.i.): 3 months.

Fig. 8c. FF/DM expected rate of devaluation (95% conf.i.): 3 months.

Fig. 8d. IL/DM expected rate of devaluation (95% conf.i.): 3 months.

Fig. 8e. IP/DM expected rate of devaluation (95% conf.i.): 3 months.

Fig. 8f. NG/DM expected rate of devaluation (95% conf.i.): 3 months.

Fig. 8

• "Autonomy"

- Narrow exchange rate band well specified (under free capital mobility)
- "Float" not well specified (say "nonpeg")! Monetary-policy regime? Objectives?
 - * "Float": Exchange rate not target variable (not in loss function)
 - * Exchange rate still matters, if exchange rate affects (directly or indirectly) the target variables (like CPI inflation, output gap)
 - * "Fear of floating"? Low exchange-rate variability does *not* imply exchange-rate objective!

- Compare open-economy flexible CPI targeting (Svensson *JIE* 2000)
 - * Implied reaction function for instrument rate

$$R_t = \dots + f_R R_t^* + \dots$$

- * Implied reaction function depends on monetary-policy regime (loss function)
- * Strong response to R_t^* (i_t^* in table below) in some regimes (strict and flexible CPI inflation targeting), but still "autonomy"
- Correlation R_t, R_t^* somewhat problematic mesure of lack of autonomy

Case π_t y_t $\pi_{t+1|t}$ π_t^* y_t^* i_t^* φ_t y_t^n q_{t-1} i_{t-1} q_t

Table 2

4. Flexible CPI

6. Taylor, CPI

5. Taylor, domestic

Reaction-function coefficients

0.72

1.50

1.50

-0.26

0.50

0.50

-0.69

0.00

0.00

 Strict domestic 	0.00	0.27	2.43	0.14	0.11	0.00	0.20	0.02	0.00	0.62	_	
2. Flexible domestic	0.00	1.39	1.42	0.17	0.14	0.00	0.24	0.07	0.00	0.53	_	
3. Strict CPI	0.02	-0.01	-2.28	-0.79	0.01	1.00	1.01	0.01	-0.01	0.00	_	

0.15

0.00

0.00

0.97

0.00

0.00

1.41

0.00

0.00

0.28

0.00

0.00

0.00

-0.45

0.00

-0.47

0.00

0.00