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Isard, Laxton and Eliasson [1] (ILE) have written a �ne and impressive paper, with much

content. It presents an estimated empirical model of the U.S. economy, with a nonlinear Phillips

curve (with both forward- and backward-looking elements) and an unobservable time-varying

natural unemployment rate. Stochastic simulations and stability analysis are undertaken with

alternative simple �instrument rules,� that is, rules specifying the instrument as a given re-

action function of directly observable or constructed, synthetic variables. Furthermore, since

the natural unemployment rate is unobservable, instrument rules that involve responses to the

unemployment gap (the deviation between unemployment and the natural rate) must rely on

the policy-makers� estimate of the time-varying natural rate.

A number of interesting detailed results are presented. The main result of the paper, as I

interpret it, can be expressed as: �Beware of simple instrument rules (especially conventional

linear and backward-looking ones) as an automatic pilot for the economy.� Such rules may

even result in instability. So-called �forecast-based� rules, where the instrument responds to the

deviation of model-consistent in�ation forecasts from the in�ation target, perform better than

the backward-looking instrument rules when the instrument responds to the deviation between

current and lagged in�ation and the in�ation target (in addition to responding to the estimated

unemployment gap).

My discussion will focus on an intuitive explanation of why linear backward-looking reac-

tion functions will be inferior in a non-linear model, and why a reaction function, where the
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instrument responds to an in�ation forecast, is likely to perform better, but is not optimal.

1. Instrument rules and targeting rules

First, however, I would like to raise the issue about how to handle practical monetary pol-

icy, given the paper�s warning about the possible instability of conventional instrument rules.

The paper states that it is very important for policymakers to calibrate their nominal inter-

est rate adjustments on the basis of forward-looking measures of real interest rates. This can

be interpreted as the paper advocating modi�ed instrument rules rather than the conventional

backward-looking instrument rules. However, in the real world, instrument rules are never ap-

plied mechanically. For several reasons, they are, at best, used as guidelines and benchmarks,

which may illuminate the monetary policy decision but never be a substitute for a forward-

looking decision framework for monetary policy. One of these reasons is the lack of a commit-

ment mechanism, by which the central bank could commit itself to a given instrument rule.

Another is the manifest ine¢ciency of any simple rule, and the strong incentives to deviate from

it, since it relies on much less information than is e¢cient, including extra-model information

that motivate judgemental adjustments.

Instead, as argued in Svensson [5] and [6], I believe that the so-called �targeting rules,�

which involve a commitment to minimize a given loss function or to ful�ll some (approximate

�rst-order) condition for (forecasts of) the target variables, but allow the optimization to be

done under discretion, is a more fruitful and realistic formalization of real-world monetary pol-

icy. In particular, as discussed in [6], I believe that �forecast targeting� (meaning selecting an

instrument path such that resulting forecasts of in�ation and the output gap minimizes an in-

tertemporal loss function) rather than a commitment to a simple instrument rule is the best way

of maintaining price stability. Furthermore, I believe that a generalization from �mean� forecast

targeting to �distribution� forecast targeting is a practical way of handling both nonlinearity

and model uncertainty in monetary policy.

2. A simple model with a nonlinear Phillips curve

Let me now illustrate what in�ation targeting, interpreted as a commitment to minimize a

particular loss function, implies in a model with a nonlinear Phillips curve, and how the resulting

equilibrium can be used to illuminate the inferiority of linear backward-looking instrument rules
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and the somewhat better performance of a forecast-based instrument rule. I choose a simple

model which can be seen as a simple variant of the more elaborate model of ILE.

Assume that the aggregate supply is given by the simple accelerationist Phillips curve

¼t+1 = ¼t + f(~ut) + "
¼
t+1; (2.1)

where ¼t is in�ation in quarter t,

~ut ´ ut ¡ u¤t

is the unemployment gap (where ut is the unemployment rate and u¤t is the natural unemploy-

ment rate), and "¼t is N(0,¾
2
¼), a normally distributed exogenous shock with zero mean and

variance ¾2¼. The natural unemployment rate is a random walk,

u¤t+1 = u
¤
t + "

u¤
t+1;

where "u¤t is N(0,¾2u¤).

Nonlinearity enters in the Phillips curve via the nonlinear function f , which ful�lls

f 0 < 0; f(0) = 0; f 00 ¸ 0:

Several functional forms can be used. ILE use the form

f(~ut) = ¡ ° ~ut
~ut ¡ 4 :

Schaling [4] instead uses

f(~ut) = ¡ °~ut
1¡ '°~ut ;

where ' ¸ 0 is used as an index of convexity. For convenience, I choose a simple quadratic

function that allows an (approximate) analytical solution, namely

f(~ut) =

8><>: ¡ °~ut + '~u2t ~ut · °=2'
¡ °2=4' ~ut > °=2';

(2.2)

for the parameters ' ¸ 0 and ° > 0. This function is continuous and di¤erentiable. For ' > 0,
it is decreasing and convex for ~ut · °=2' and constant for ~ut > °=2'. For ' = 0, it is linear,
f(~ut) = ¡ °~ut. Thus, ' can be interpreted as an index of convexity and nonlinearity.

Aggregate demand is taken to a linear function in terms of the unemployment gap,

~ut+1 = ´u~ut + ´r(it ¡ ¼t+1jt ¡ ¹r) + "~ut+1; (2.3)
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where it is a short nominal interest rate (denoted rst in ILE) and the central bank�s instrument,

xt+¿ jt ´ Etxt+¿ for any variable x denotes the expectation of xt+¿ conditional on information
available in quarter t, ¹r > 0 is the �natural� real interest rate, "ut+1 is N(0,¾

2
~u), and parameters

´u and ´r are positive. The natural real interest rate is the constant real interest rate that, in

the absence of shocks, would result in a constant zero unemployment gap.

Assume an intertemporal loss function for the central bank,

Et

1X
¿=0

±¿Lt+¿ ;

where 0 < ± < 1 is a discount factor and the period loss, Lt, is given by the period loss function

Lt =
1

2
[(¼t ¡ ¼¤)2 + µ~u2t ];

where ¼¤ is the in�ation target (denoted ¼TAR in ILE). (I have simpli�ed the period loss function

relative to ILE by setting ¯ = º = 0.)

Let me simplify further by setting µ = 0 and consider �strict� in�ation targeting,

Lt =
1

2
(¼t ¡ ¼¤)2;

leaving the case of ��exible� in�ation targeting, µ > 0, as an extension. We note from (2.1)

that ¼t and ¼t+1 are predetermined with respect to quarter t. By (2.3), the instrument it a¤ects

~ut+1, which, in turn, a¤ects ¼t+2 (and later in�ation rates). Since there is no cost to instrument

adjustment (since º = 0), it is clear that it should be set so as to minimize

Et±
2Lt+2 (2.4)

(since it+¿ for ¿ ¸ 1 can be freely used to minimize Et+¿±¿+2Lt+¿+2).
Since ~ut+1 by (2.3) is linear in it, we realize from (2.1) and (2.4) that the �rst-order condition

for an optimum can be written

0 = Et[(¼t+2 ¡ ¼¤)f 0(~ut+1)] = Etf[¼t+1 + f(~ut+1) + "¼t+2 ¡ ¼¤]f 0(~ut+1)g
= (¼t+2jt ¡ ¼¤)Etf 0(~ut+1) + Covt[f(~ut+1); f 0(~ut+1)]; (2.5)

(where I have used that Et[x; y] = Et[x]Et[y]+Covt[x; y]). Furthermore, assuming that negligible

probability mass falls in the interval ~ut+1 > °=2', we have

Covt[f(~ut+1); f
0(~ut+1)] = 2'Covt[f(~ut+1); ~ut+1]:
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Exploiting a theorem of Rubinstein [2],1 we have

Covt[f(~ut+1); ~ut+1] = Etf
0(~ut+1)¾2~u:

Using this in (2.5), I get the �rst-order condition

¼t+2jt = ¼¤ ¡ 2'¾2~u: (2.6)

Thus, under strict in�ation targeting with a convex Phillips curve, it is optimal to undershoot

the in�ation target, on average. Average in�ation, the unconditional mean of in�ation, will ful�ll

E[¼t] = ¼
¤ ¡ 2'¾2~u:

In order to determine the optimal setting of it, I need to solve (2.6) for ~ut+1jt: We have

¼t+2jt ´ ¼t+1jt +Etf(~ut+1): (2.7)

We note, in passing, that by taking the unconditional mean of (2.7), we have E[f(~ut)] = 0.

Since f(~ut) is convex and f(0) = 0, it follows (as in ILE) that the average unemployment gap

will be positive, E[~ut] > 0. We can directly infer from (2.3) that the average real interest rate,

rt ´ it ¡ ¼t+1jt, must exceed the natural real interest rate, E[rt] > ¹r:
In order to solve for ~ut+1jt, assume that the variance ¾2~u is su¢ciently small to warrant the

second-order Taylor approximation

Etf(~ut+1) = Etf(~ut+1jt + "~ut+1) = f(~ut+1jt) +
1

2
f 00(~ut+1jt)¾2~u = f(~ut+1jt) + '¾

2
~u: (2.8)

Combining (2.2) and (2.7)�(2.8) leads to a second-order equation for ~ut+1jt. The solution for

the relevant root can be written

~ut+1jt = g(¼t+1jt ¡ ¼¤); (2.9)

where

g(¼t+1jt ¡ ¼¤) ´
8><>:

°
2'

³
1¡

q
1¡ 4'

°2 (¼t+1jt ¡ ¼¤ + 3'¾2~u
´
; ' > 0

1
°

³
¼t+1jt ¡ ¼¤

´
; ' = 0

Combining the expectation in quarter t of (2.3) with (2.9) results in the optimal reaction

function,

it = ¹r + ¼t+1jt +
1

´r
g(¼t+1jt ¡ ¼¤)¡

´u
´r
~ut (2.10)

´ ¹r + ¼t + f(~ut) +
1

´r
g (¼t ¡ ¼¤ + f(~ut))¡ ´u

´r
~ut: (2.11)

1 The theorem says that, if x and y are bivariate normal, under some mild regularity conditions,

Cov[f(x); y] = E[f 0(x)]Cov[x; y]:
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The reaction function can be expressed in terms of ¼t+1jt and ~ut as in (2.10). Alternatively,

since the predetermined ¼t+1jt ful�lls

¼t+1jt ´ ¼t + f(~ut) (2.12)

(recall that ~ut is observable, since I simplify by assuming that u¤t is observable), it can be

expressed in terms of ¼t and ~ut as in (2.11).

3. Comparing reaction functions

Thus, under strict in�ation targeting, the endogenous reaction function on the equivalent forms

(2.10) or (2.11) will result. The reaction function (2.10) is nonlinear in ¼t+1jt and linear in ~ut.

The reaction function (2.11) is nonlinear in both ¼t and ~ut. We note that it is optimal to respond

to ~ut, even under strict in�ation targeting with no weight on ~ut in the loss function, since, as

emphasized in Svensson [5], it is generally optimal to respond to the determinants of the target

variable(s) rather than just the target variable(s) themselves.

We can now compare these optimal reaction functions to a Taylor-type rule,

it = ¹r + ¼t +w¼(¼t ¡ ¼¤)¡wu~ut; (3.1)

and the two forecast-based instrument rules examined by ILE,

it = ¹r + ¼
4
t+4jt +w¼(¼

4
t ¡ ¼¤)¡wu~ut

which is denoted IFB1 (in�ation-forecast-based rule 1), and

it = ¹r + ¼
4
t+4jt +w¼(¼t+3jt ¡ ¼¤)¡wu~ut

which is denoted IFB2. Here ¼4t =
1
4

P3
¿=0 ¼t¡¿ denotes 4-quarter in�ation. Both IFB rules are

somewhat simpli�ed by the assumption that u¤t and hence ~ut are observable.

We see that the Taylor-type rule, as a function of ¼t and ~ut, is quite di¤erent from the

optimal reaction function (2.11), since the former is linear in both arguments whereas the latter

is nonlinear. Thus, it is quite intuitive that, with a nonlinear Phillips curve, the linear Taylor

rule is inferior.

Furthermore, for IFB1, the term ¼4t+4jt =
1
4

P3
¿=0 ¼t+4¡¿ jt enters. For IFB2, the term ¼t+3jt

also enters. Since the terms ¼t+4¡¿ jt = ¼t+3¡¿ jt + Etf(~ut+3¡¿ jt) for ¿ = 0; :::; 3, are nonlinear

functions of ~ut, this means that the instrument becomes a nonlinear function of ~ut. The resulting
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nonlinear function is, of course, not equal to the optimal reaction function (2.10) or (2.11), so it

will not be optimal. Still, it may be closer to the optimal reaction function than the backward-

looking Taylor-type rule (3.1). This seems to be the reason why IFB1 and IFB2 perform better

than the backward-looking linear rule.

Furthermore, note that IFB1 and IFB2 are not reaction functions that are functions of

predetermined variables only. Instead, they make the instrument a function of an endogenous

model-consistent in�ation forecast, which depends on the instrument rule itself and requires the

solution of the whole model to be determined. Therefore, IFB1 and IFB2 are actually examples

of quite complex equilibrium conditions.2 For this reason and others discussed in Svensson [5],

I remain sceptical about their usefulness in practical monetary policy.

4. An instrument rule involving an optimal response to an in�ation forecast

Suppose, however, that we would insist on applying an instrument rule involving a response to

an in�ation forecast. What could we do within the present model? First, consider the two-

period in�ation forecast ¼t+2jt as a function ¦t+2jt(it) of the instrument, it, and the state of the

economy in periods t, ¼t and ~ut. This function is by (2.7) de�ned by

¼t+2jt = ¦t+2jt(it)

´ ¼t+1jt + f [´u~ut + ´r(it ¡ ¼t+1jt)] + '¾2~u;

where we recall that ¼t+1jt is given by (2.12) and where I have used the approximation (2.8).

Now, we can, of course, consider a �rst-order Taylor approximation to this forecast around the

interest rate it¡1 in the previous quarter,

¼t+2jt = ¦t+2jt(it¡1) +
@¦t+2jt(it¡1)

@i
¢it;

where ¢it ´ it ¡ it¡1. Combining this with the �rst-order condition (2.6) and solving for ¢it
leads to

¢it =
1

¡ @¦t+2jt(it¡1)
@i

[¦t+2jt(it¡1)¡ (¼¤ ¡ 2'¾2~u)]: (4.1)

Here, we get an optimal instrument rule, which says that the optimal adjustment of the

interest rate, ¢it, should be proportional to the deviation between the unchanged-interest-rate

in�ation forecasts ¦t+2jt(it¡1) and the adjusted in�ation target, ¼¤ ¡ 2'¾2~u. Furthermore, the
2 Rudebusch and Svensson [3, Appendix] demonstrate the complexity of this instrument rule.
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response coe¢cient is given by

1

¡ @¦t+2jt(it¡1)
@i

=
1

¡ ´rf 0[´u~ut + ´r(it¡1 ¡ ¼t+1jt ¡ ¹r)]
=

1

´rf° ¡ 2'[´u~ut + ´r(it¡1 ¡ ¼t+1jt ¡ ¹r)]g
:

Several comments are in order. First, the in�ation forecast is not the model-consistent

in�ation forecast for the endogenous interest rate but the unchanged-interest-rate forecast (that

is, for it = it¡1). Second, the instrument rule involves the change in the interest rate, not the

level. Third, an adjusted in�ation target should be applied (when ' > 0 and the Phillips curve is

nonlinear). Fourth, the response coe¢cient is not constant but state-dependent (when ' > 0).

The response coe¢cient is the reciprocal of the slope of the Phillips curve for an unchanged-

interest-rate unemployment-gap forecast for period t+1, given by ´u~ut+´r(it¡1¡¼t+1jt). Finally,
even if the response coe¢cient is state-dependent, the instrument rule is only an approximation,

since it follows from a �rst-order approximation of a nonlinear function.

Clearly, the optimal instrument rule (4.1) is, in several respects, quite di¤erent from the IFB

rules discussed by ILE. In a linear model (when ' = 0), the problem of the adjusted in�ation

target and the state-dependent response coe¢cient would disappear. Then, the optimal instru-

ment adjustment is proportional to the deviation between an unchanged-interest-rate in�ation

forecast and the in�ation target. Thus, it seems more intuitive that any response should be to

the unchanged-interest-rate forecast than to a model-consistent forecast.
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