EvHo301.tex

George W. Evans and Seppo Honkapohja Monetary Policy, Expectations and Commitment ASSA 2003

Comments by Lars E.O. Svensson www.princeton.edu/~svensson

Summary

• Model

$$x_t = E_t^* x_{t+1} - \varphi(i_t - E_t^* \pi_{t+1}) + g_t \tag{1}$$

$$\pi_t = \beta E_t^* \pi_{t+1} + \lambda x_t + u_t \tag{2}$$

$$g_t = \mu g_{t-1} + \tilde{g}_t \tag{3a}$$

$$u_t = \rho u_{t-1} + \tilde{u}_t \tag{3b}$$

 E_t^* private-sector expectations, not necessarily rational

 E_t rational expectations

Monetary-policy loss function

$$E_{t} \sum_{s=0}^{\infty} \beta^{s} (\pi_{t+s}^{2} + \alpha x_{t+s}^{2})$$
 (4)

• Optimal rational-expectations equilibrium (REE) Optimal targeting rule

$$\pi_t + \frac{\alpha}{\lambda}(x_t - x_{t-1}) = 0 \tag{8}$$

Combine with $(2) \Rightarrow REE$

$$x_t = \bar{b}_x x_{t-1} + \bar{c}_x u_t \tag{9}$$

$$\pi_t = \bar{b}_{\pi} x_{t-1} + \bar{c}_{\pi} u_t \tag{10}$$

Combine with $(1) \Rightarrow$ Reaction function

$$i_t = \psi_x x_{t-1} + \psi_a g_t + \psi_u u_t \tag{13}$$

 \bullet Adaptive learning

Period t, E_t^* , PLM: (a_t, b_t, c_t) , $y_t \equiv (x_t, \pi_t)'$, $v_t \equiv (g_t, u_t)'$

$$y_s = a_t + b_t y_{s-1} + c_t v_s (18)$$

 $\mathbf{E}_{t}^{*}y_{t+1} = a_{t} + b_{t}\mathbf{E}_{t}^{*}y_{t} + c_{t}\mathbf{E}_{t}^{*}v_{t+1}$

$$= a_t + b_t(a_t + b_t y_{t-1} + c_t v_t) + c_t F v_t, \quad F = \begin{bmatrix} \mu & 0 \\ 0 & \rho \end{bmatrix}$$
 (19)

Combine (19) with (1), (2) and, for instance, reaction function (13), solve for $y_t \Rightarrow$ new observation, ALM:

$$y_t = \tilde{a}_t + \tilde{b}_t y_{t-1} + \tilde{c}_t v_t$$

Period t+1, \mathbb{E}^*_{t+1} , PLM: $(a_{t+1},b_{t+1},c_{t+1})$, update by recursive least squares, $\xi_t=(a_t',b_t',c_t')'$, $z_t=(1,y_{t-1}',v_t')'$

$$\xi_{t+1} = \xi_t + \frac{1}{t+1} R_t^{-1} z_t (y_t - \xi_t' z_t)$$

$$R_{t+1} = R_t + \frac{1}{t+1} (z_t z_t' - R_t)$$

4

• Question: Is REE learnable (does $E_t^* \to E_t$ when $t \to \infty$) under alternative assumptions about monetary-policy implementation?

• Results

- Depends on the monetary-policy implementation and parameters (and private-sector information: lagged/current variables)
- Learnability if monetary-policy implementation takes \mathbf{E}_t^* into account (expectations-based reaction function) to achieve optimal targeting rule (8)

Comments

- Microfoundations of model
- Focus on optimal targeting rule rather than instrument rule
- Alternative reaction functions

5

6

- Microfoundations of model?
 - Distinction aggregate/individual?
 - Individual information? Includes representative agent, aggregate equilibrium?
 - Preston 2002a,b:
 - * Individual less information
 - * Consumption plans rely on PLM w/ individual budget constraint rather than w/ aggregate equilibrium/representative agent
 - * Not use law of iterated expectations for aggregate expectations

$$\mathbf{E}_t^* \equiv \int_j \mathbf{E}_{jt}^* dj$$

* Different results

7

- Alternative reaction functions
 - $-\operatorname{McCallum-Nelson}$

$$i_t = \pi_t + \theta[\pi_t + \frac{\alpha}{\lambda}(x_t - x_{t-1})]$$

Very large θ to achieve optimal targeting rule

Svensson-Woodford "Implementing Optimal Policy...": Dangerous, observation/estimation errors

- Svensson-Woodford (w/ current x_t , π_t predetermined)

$$\begin{split} i_{t+1,t} &= \overline{\imath}_{t+1,t} + \theta[\pi_{t+1|t} + \frac{\alpha}{\lambda}(x_{t+1|t} - x_{t|t-1})] \\ \overline{\imath}_{t+1,t} &\equiv \psi_x x_{t|t-1} + \psi_g g_{t+1|t} + \psi_u u_{t+1|t} \end{split}$$

Implements $\pi_{t+1|t} + \frac{\alpha}{\lambda}(x_{t+1|t} - x_{t|t-1}) = 0$

Out-of-equilibrium commitment achieves determinacy

 $\theta > \bar{\theta}$ implies determinacy

9

- Focus on optimal targeting rule rather than instrument rule
 - Commitment to optimal targeting rule rather than to particular reaction function
 - * CB transparency, announcements: Influence private-sector expectations directly
 - Learning: Combine (19) with (3) and (8)
 - * Cross-equation restriction on E_t^* ?
 - * Same as CB using E_t^* to implement (8)
 - * Real-world CBs take actual private-sector expectations into account
 - \cdot Extract private-sector expectations
 - · "Credibility"

8