BeWi301.tex

Guenter W. Beck and Volker Wieland Learning, Stabilization and Credibility: Optimal Monetary Policy in a Changing Economy

ASSA 2003

Comments by Lars E.O. Svensson www.princeton.edu/~svensson

- Extensive comment on Ellison-Valla (different setup than Wieland 98, 00)
 - More realistic model uncertainty (continuous rather than discrete)
 - Reproduced Wieland results
 - Comparison not yet complete
 - * Intuition/explanation of differences?
 - * Graphs different from Ellison-Valla
 - * Role of output-gap target, inflation bias?

- Focus on deterministic component of output gap (target variable)

$$y_t = \beta(\pi_t - \pi_t^e) + \mu_t$$

$$\tilde{y}_t \equiv b_{t|t-1}(\pi_t - \pi_t^e) + \phi z_t$$

$$\tilde{y}_t = \left[1 - \frac{b_{t|t-1}^2}{b_{t|t-1}^2 + \omega}\right] \phi z_t \tag{C}$$

$$\tilde{y}_t = \left[1 - \frac{b_{t|t-1}^2}{b_{t|t-1}^2 + v_{t|t-1}^b + \omega}\right] \phi z_t \tag{M}$$

C < M

- Caution/aggressiveness depends on target variable
- Instrument rate usually more closely associated with output gap than inflation

• Issue

- Optimal monetary policy
- Model uncertainty (parameter uncertainty)
- Learning, estimation
- Policy response: Caution or aggressiveness

Alternatives

- C: Certainty-equivalent policy, passive learning
- M: Myopically optimal policy, passive learning (Brainard 67)
- D: Dynamically optimal policy, optimal learning (experimentation)
- Policy response: Caution < Aggressiveness
 - Brainard: Normally M < C but sometimes M > C (Söderström

- Wieland 98, 00: M < D (<) C

-Ellison-Valla 01: D < M < C

- Definition of caution/aggressiveness?
 - Policy response? Variable? Instrument or target?
 - Focus on inflation (target variable)

$$\pi_t = \pi_t^e - \frac{b_{t|t-1}}{b_{t|t-1}^2 + \omega} \phi z_t$$
 (C)

$$\pi_t = \pi_t^e - \frac{b_{t|t-1}}{b_{t|t-1}^2 + v_{t|t-1}^b + \omega} \phi z_t \tag{M}$$

M < C