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1 Introduction

I have long been interested in the analysis of monetary policy under uncertainty. The

problems arise from what we do not know; we must deal with the uncertainty from the

base of what we do know. [...]

The Fed faces many uncertainties, and must adjust its one policy instrument to navigate

as best it can this sea of uncertainty. Our fundamental principle is that we must use

that one policy instrument to achieve long-run price stability. [...]

My bottom line is that market participants should concentrate on the fundamentals. If

the bond traders can get it right, they’ll do most of the stabilization work for us, and

we at the Fed can sit back and enjoy life.

William Poole [14]

Earlier in his tenure as President of the Federal Reserve Bank of St. Louis, William Poole laid out

some of the issues that policymakers face when deciding on policy, as reflected in the quotations

above. In this paper we take up some of these issues, applying a framework to help policymakers

navigate the “sea of uncertainty.” We focus particularly on the issue of the knowledge and beliefs

of the policymakers and the private sector — showing how both groups of agents learn from their

observations, and how this may or may not lead to enhanced economic stability. We also address the

extent to which policymakers should “sit back,” or instead whether they should actively intervene

in markets in order to gain knowledge to help mitigate future uncertainty.

In previous work, Svensson and Williams [17] and [18], we have developed methods to study op-

timal policy in Markov jump-linear-quadratic (MJLQ) models with forward-looking variables: mod-

els with conditionally linear dynamics and conditionally quadratic preferences, where the matrices

in both preferences and dynamics are random. In particular, each model has multiple “modes,”

a finite collection of different possible values for the matrices, whose evolution is governed by a

finite-state Markov chain. In our previous work, we have discussed how these modes could be

structured to capture many different types of uncertainty relevant for policymakers. Here we put

those suggestions into practice in a simple benchmark policy model.

In a first paper, Svensson and Williams [17], we studied optimal policy design in MJLQ models

when policymakers can or cannot observe the current mode, but we abstracted from any learning

and inference about the current mode. Although in many cases the optimal policy under no learn-
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ing (NL) is not a normatively desirable policy, it serves as a useful benchmark for our later policy

analyses. In a second paper, Svensson and Williams [18], we focused on learning and inference in

the more relevant situation, particularly for the model-uncertainty applications which interest us,

in which the modes are not directly observable. Thus, decision makers must filter their observations

to make inferences about the current mode. As in most Bayesian learning problems, the optimal

policy thus typically includes an experimentation component reflecting the endogeneity of informa-

tion. This class of problems has a long history in economics, and it is well-known that solutions are

difficult to obtain. We developed algorithms to solve numerically for the optimal policy.1 Due to

the curse of dimensionality, the Bayesian optimal policy (BOP) is only feasible in relatively small

models. Confronted with these difficulties, we also considered adaptive optimal policy (AOP).2 In

this case, the policymaker in each period does update the probability distribution of the current

mode in a Bayesian way, but the optimal policy is computed each period under the assumption that

the policymaker will not learn in the future from observations. In our setting, the AOP is signifi-

cantly easier to compute, and in many cases provides a good approximation to the BOP. Moreover,

the AOP analysis is of some interest in its own right, as it is closely related to specifications of

adaptive learning which have been widely studied in macroeconomics (see Evans and Honkapohja

[9] for an overview). Further, the AOP specification rules out the experimentation which some may

view as objectionable in a policy context.3

In this paper, we apply our methodology to study optimal monetary-policy design under uncer-

tainty in dynamic stochastic general equilibrium (DSGE) models. We begin by summarizing the

main findings from our previous work, leading to implementable algorithms for analyzing policy in

MJLQ models. We then turn to examples which highlight the effects of learning and experimenta-

tion for two sources of uncertainty in the benchmark New Keynesian Phillips curve. In this model

we compare and contrast optimal policies under no learning, AOP, and BOP. We analyze whether

learning is beneficial—it is not always so, a fact which at least partially reflects our assumption

of symmetric information between the policymakers and the public—and then quantify the ad-
1 In addition to the classic literature (on such problems as a monopolist learning its demand curve), Wieland

[22]-[23] and Beck and Wieland [1] have recently examined Bayesian optimal policy and optimal experimentation in
a context similar to ours but without forward-looking variables. Tesfaselassie, Schaling, and Eijffinger [20] examine
passive and active learning in a simple model with a forward-looking element in the form of a long interest rate in
the aggregate-demand equation. Ellison and Valla [8] and Cogley, Colacito, and Sargent [4] study situations like
ours but where the expectational component is as in the Lucas-supply curve (Et−1πt, for example) rather than our
forward-looking case (Etπt+1, for example). More closely related to our present paper, Ellison [7] analyzes active and
passive learning in a New Keynesian model with uncertainty about the slope of the Phillips curve.

2 What we call optimal policy under no learning, adaptive optimal policy, and Bayesian optimal policy has in the
literature also been referred to as myopia, passive learning, and active learning, respectively.

3 In addition, AOP is useful for technical reasons as it gives us a good starting point for our more intensive
numerical calculations in the BOP case.
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ditional gains from experimentation.4 We find that the experimentation component is typically

small. Recognizing the informational component of policy actions often leads policy to be slightly

more aggressive, but somewhat surprisingly in one example here it leads to a less aggressive optimal

policy.

The paper is organized as follows: Section 2 presents the MJLQ framework and summarizes our

earlier work. Section 3 presents our analysis of learning and experimentation in a simple benchmark

New Keynesian model. Section 4 presents some conclusions and suggestions for further work.

2 MJLQ Analysis of Optimal Policy

This section summarizes our earlier work, Svensson and Williams [17] and [18].

2.1 An MJLQ model

We consider an MJLQ model of an economy with forward-looking variables. The economy has

a private sector and a policymaker. We let Xt denote an nX -vector of predetermined variables

in period t, xt an nx-vector of forward-looking variables, and it an ni-vector of (policymaker)

instruments (control variables).5 We let model uncertainty be represented by nj possible modes

and let jt ∈ Nj ≡ {1, 2, ..., nj} denote the mode in period t. The model of the economy can then

be written

Xt+1 = A11jt+1Xt + A12jt+1xt + B1jt+1it + C1jt+1εt+1, (2.1)

EtHjt+1xt+1 = A21jtXt + A22jtxt + B2jtit + C2jtεt, (2.2)

where εt is a multivariate normally distributed random i.i.d. nε-vector of shocks with mean zero

and contemporaneous covariance matrix Inε . The matrices A11j , A12j , ..., C2j have the appropriate

4 In addition to our own previous work, MJLQ models have been widely studied in the control-theory literature
for the special case when the model modes are observable and there are no forward-looking variables (see Costa,
Fragoso, and Marques [5] (henceforth CFM) and the references therein). do Val and Başar [6] provide an application
of an adaptive-control MJLQ problem in economics. More recently, Zampolli [25] has used such an MJLQ model
to examine monetary policy under shifts between regimes with and without an asset-market bubble. Blake and
Zampolli [2] provide an extension of the MJLQ model with observable modes to include forward-looking variables
and present an algorithm for the solution of an equilibrium resulting from optimization under discretion. Svensson
and Williams [17] provide a more general extension of the MJLQ framework with forward-looking variables and
present algorithms for the solution of an equilibrium resulting from optimization under commitment in a timeless
perspective as well as arbitrary time-varying or time-invariant policy rules, using the recursive saddlepoint method
of Marcet and Marimon [12]. They also provide two concrete examples: an estimated backward-looking model (a
three-mode variant of Rudebusch and Svensson [15]) and an estimated forward-looking model (a three-mode variant
of Lindé [11]). Svensson and Williams [17] also extend the MJLQ framework to the more realistic case of unobservable
modes, although without introducing learning and inference about the probability distribution of modes. Svensson
and Williams [18] focus on learning and experimentation in the MJLQ framework.

5 The first component of Xt may be unity, in order to allow for mode-dependent intercepts in the model equations.
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dimensions and depend on the mode j. As a structural model here is simply a collection of matrices,

each mode can represent a different model of the economy. Thus, uncertainty about the prevailing

mode is model uncertainty.6

Note that the matrices on the right side of (2.1) depend on the mode jt+1 in period t + 1,

whereas the matrices on the right side of (2.2) depend on the mode jt in period t. Equation (2.1)

then determines the predetermined variables in period t+1 as a function of the mode and shocks in

period t + 1 and the predetermined variables, forward-looking variables, and instruments in period

t. Equation (2.2) determines the forward-looking variables in period t as a function of the mode and

shocks in period t, the expectations in period t of next period’s mode and forward-looking variables,

and the predetermined variables and instruments in period t. The matrix A22j is non-singular for

each j ∈ Nj .

The mode jt follows a Markov process with the transition matrix P ≡ [Pjk].7 The shocks εt

are mean zero and i.i.d. with probability density ϕ, and without loss of generality we assume that

εt is independent of jt.8 We also assume that C1jεt and C2kεt are independent for all j, k ∈ Nj .

These shocks, along with the modes, are the driving forces in the model. They are not directly

observed. For technical reasons, it is convenient but not necessary that they are independent. We

let pt = (p1t, ..., pnjt)′ denote the true probability distribution of jt in period t. We let pt+τ |t denote

the policymaker’s and private sector’s estimate in the beginning of period t of the probability

distribution in period t + τ . The prediction equation for the probability distribution is

pt+1|t = P ′pt|t. (2.3)

We let the operator Et[·] in the expression EtHjt+1xt+1 on the left side of (2.2) denote expec-

tations in period t conditional on policymaker and private-sector information in the beginning of

period t, including Xt, it, and pt|t, but excluding jt and εt. Thus, the maintained assumption is

symmetric information between the policymaker and the (aggregate) private sector. Since forward-

looking variables will be allowed to depend on jt, parts of the private sector, but not the aggregate

private sector, may be able to observe jt and parts of εt. Note that although we focus on the

determination of the optimal policy instrument it, our results also show how private sector choices

as embodied in xt are affected by uncertainty and learning. The precise informational assumptions
6 See also Svensson and Williams [17], where we show how many different types of uncertainty can be mapped

into our MJLQ framework.
7 Obvious special cases are P = Inj , when the modes are completely persistent, and Pj. = p̄′ (j ∈ Nj), when the

modes are serially i.i.d. with probability distribution p̄.
8 Because mode-dependent intercepts (as well as mode-dependent standard deviations) are allowed in the model,

we can still incorporate additive mode-dependent shocks.
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and the determination of pt|t will be specified below.

We let the policymaker’s intertemporal loss function in period t be

Et

∞∑

τ=0

δτL(Xt+τ , xt+τ , it+τ , jt+τ ) (2.4)

where δ is a discount factor satisfying 0 < δ < 1, and the period loss, L(Xt, xt, it, jt), satisfies

L(Xt, xt, it, jt) ≡



Xt

xt

it



′

Wjt




Xt

xt

it


 , (2.5)

where the matrix Wj (j ∈ Nj) is positive semidefinite. We assume that the policymaker optimizes

under commitment in a timeless perspective. As explained below, we will then add the term

Ξt−1
1
δ
EtHjtxt (2.6)

to the intertemporal loss function in period t. As we shall see below, the nx-vector Ξt−1 is the

vector of Lagrange multipliers for equation (2.2) from the optimization problem in period t − 1.

For the special case when there are no forward-looking variables (nx = 0), the model consists of

(2.1) only, without the term A12jt+1xt; the period loss function depends on Xt, it, and jt only; and

there is no role for the Lagrange multipliers Ξt−1 or the term (2.6).

2.2 Approximate MJLQ models

While in this paper we start with an MJLQ model, it is natural to ask where such a model comes

from, as usual formulations of economic models are not of this type. However the same type of

approximation methods that are widely used to convert nonlinear models into their linear counter-

parts can also convert nonlinear models into MJLQ models. We analyze this issue in Svensson and

Williams [17], and present an illustration as well. Here we briefly discuss the main ideas. Rather

than analyzing local deviations from a single steady state as in conventional linearizations, for an

MJLQ approximation we analyze the local deviations from (potentially) separate, mode-dependent

steady states. Standard linearizations are justified as asymptotically valid for small shocks, as an

increasing time is spent in the vicinity of the steady state. Our MJLQ approximations are asymp-

totically valid for small shocks and persistent modes, as an increasing time is spent in the vicinity

of each mode-dependent steady state. Thus, for slowly-varying Markov chains, our MJLQ provide

accurate approximations of nonlinear models with Markov switching.
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2.3 Types of optimal policies

We will distinguish three cases: (1) Optimal policy when there is no learning (NL), (2) Adaptive

optimal policy (AOP), and (3) Bayesian optimal policy (BOP). By NL, we refer to a situation

when the policymaker and the aggregate private sector have a probability distribution pt|t over the

modes in period t and updates the probability distribution in future periods using the transition

matrix only, so the updating equation is

pt+1|t+1 = P ′pt|t. (2.7)

That is, the policymaker and the private sector do not use observations of the variables in the

economy to update the probability distribution. The policymaker then determines optimal policy

in period t conditional on pt|t and (2.7). This is a variant of a case examined in Svensson and

Williams [17].

By AOP, we refer to a situation when the policymaker in period t determines optimal policy

as in the NL case, but then uses observations of the realization of the variables in the economy to

update its probability distribution according to Bayes Theorem. In this case, the instruments will

generally have an effect on the updating of future probability distributions, and through this channel

separately affect the intertemporal loss. However, the policymaker does not exploit that channel in

determining optimal policy. That is, the policymaker does not do any conscious experimentation.

By BOP, we refer to a situation when the policymaker acknowledges that the current instruments

will affect future inference and updating of the probability distribution, and calculates optimal

policy taking this separate channel into account. Therefore, BOP includes optimal experimentation,

where for instance the policymaker may pursue policy that increases losses in the short run but

improves the inference of the probability distribution and therefore lowers losses in the longer run.

2.4 Optimal policy with no learning

We first consider the NL case. Svensson and Williams [17] derive the equilibrium under commit-

ment in a timeless perspective for the case when Xt, xt, and it are observable in period t, jt is

unobservable, and the updating equation for pt|t is given by (2.7). Observations of Xt, xt, and it

are then not used to update pt|t.
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It will be useful to replace equation (2.2) by the two equivalent equations,

EtHjt+1xt+1 = zt, (2.8)

0 = A21jtXt + A22jtxt − zt + B2jtit + C2jtεt, (2.9)

where we introduce the nx-vector of additional forward-looking variables, zt. Introducing this vector

is a practical way of keeping track of the expectations term on the left side of (2.2). Furthermore,

it will be practical to use (2.9) and solve xt as a function of Xt, zt, it, jt, and εt

xt = x̃(Xt, zt, it, jt, εt) ≡ A−1
22jt

(zt −A21jtXt −B2jtit − C2jtεt). (2.10)

We note that, for given jt, this function is linear in Xt, zt, it, and εt.

In order to solve for the optimal decisions, we use the recursive saddlepoint method (see Marcet

and Marimon [12], Svensson and Williams [17], and Svensson [16] for details of the recursive sad-

dlepoint method). Thus, we introduce Lagrange multipliers for each forward-looking equation, the

lagged values of which become state variables and reflect costs of commitment, while the current

values become control variables. The dual period loss function can be written

EtL̃(X̃t, zt, it, γt, jt, εt) ≡
∑

j

pjt|t

∫
L̃(X̃t, zt, it, γt, j, εt)ϕ(εt)dεt,

where X̃t ≡ (X ′
t,Ξ

′
t−1)

′ is the (nX + nx)-vector of extended predetermined variables (that is,

including the nx-vector Ξt−1), γt is an nx-vector of Lagrange multipliers, and ϕ(·) denotes a generic

probability density function (for εt, the standard normal density function), and where

L̃(X̃t, zt, it, γt, jt, εt) ≡ L[Xt, x̃(Xt, zt, it, jt, εt), it, jt]− γ′tzt + Ξ′t−1

1
δ
Hjt x̃(Xt, zt, it, jt, εt). (2.11)

As discussed in Svensson and Williams [17], the failure of the law of iterated expectations

leads us to introduce the collection of value functions V̂ (st, j) which condition on the mode, while

the value function Ṽ (st) averages over these and represents the solution of the dual optimization

problem. The somewhat unusual Bellman equation for the dual problem can be written

Ṽ (st) ≡ EtV̂ (st, jt) ≡
∑

j
pjt|tV̂ (st, j)

= max
γt

min
(zt,it)

Et{L̃(X̃t, zt, it, γt, jt, εt) + δV̂ [g(st, zt, it, γt, jt, εt, jt+1, εt+1), jt+1]}

≡ max
γt

min
(zt,it)

∑
j
pjt|t

∫ [
L̃(X̃t, zt, it, γt, j, εt)
+ δ

∑
k PjkV̂ [g(st, zt, it, γt, j, εt, k, εt+1), k]

]
ϕ(εt)ϕ(εt+1)dεtdεt+1.

(2.12)
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where st ≡ (X̃ ′
t, p

′
t|t)

′ denotes the perceived state of the economy (it includes the perceived proba-

bility distribution, pt|t, but not the true mode) and (st, jt) denotes the true state of the economy

(it includes the true mode of the economy). As we discuss in more detail below, it is necessary

to include the mode jt in the state vector because the beliefs do not satisfy the law of iterated

expectations. In the BOP case beliefs do satisfy this property, so the state vector is simply st. Also

note that in the Bellman equation we require that all the choice variables respect the information

constraints, and thus depend on the perceived state st but not the mode j directly.

The optimization is subject to the transition equation for Xt,

Xt+1 = A11jt+1Xt + A12jt+1 x̃(Xt, zt, it, jt, εt) + B1jt+1it + C1jt+1εt+1, (2.13)

where we have substituted x̃(Xt, zt, it, jt, εt) for xt; the new dual transition equation for Ξt,

Ξt = γt, (2.14)

and the transition equation (2.7) for pt|t. Combining equations, we have the transition for st,

st+1 ≡



Xt+1

Ξt

pt+1|t+1


 = g(st, zt, it, γt, jt, εt, jt+1, εt+1)

≡



A11jt+1Xt + A12jt+1 x̃(Xt, zt, it, j, εt) + B1jt+1it + C1jt+1εt+1

γt

P ′pt|t


 . (2.15)

It is straightforward to see that the solution of the dual optimization problem (2.12) is linear

in X̃t for given pt|t, jt,




zt

it
γt


 =




z(st)
i(st)
γ(st)


 = F (pt|t)X̃t ≡




Fz(pt|t)
Fi(pt|t)
Fγ(pt|t)


 X̃t, (2.16)

xt = x(st, jt, εt) ≡ x̃(Xt, z(st), i(st), jt, εt) ≡ FxX̃(pt|t, jt)X̃t + Fxε(pt|t, jt)εt. (2.17)

This solution is also the solution to the original primal optimization problem. We note that xt is

linear in εt for given pt|t and jt. The equilibrium transition equation is then given by

st+1 = ĝ(st, jt, εt, jt+1, εt+1) ≡ g[st, z(st), i(st), γ(st), jt, εt, jt+1, εt+1]. (2.18)

As can be easily verified, the (unconditional) dual value function Ṽ (st) is quadratic in X̃t for

given pt|t, taking the form

Ṽ (st) ≡ X̃ ′
tṼX̃X̃(pt|t)X̃t + w(pt|t).
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The conditional dual value function V̂ (st, jt) gives the dual intertemporal loss conditional on the

true state of the economy, (st, jt). It follows that this function satisfies

V̂ (st, j) ≡
∫ [

L̃(X̃t, z(st), i(st), γ(st), j, εt)
+ δ

∑
k PjkV̂ [ĝ(st, j, εt, k, εt+1), k]

]
ϕ(εt)ϕ(εt+1)dεtdεt+1 (j ∈ Nj).

The function V̂ (st, jt) is also quadratic in X̃t for given pt|t and jt,

V̂ (st, jt) ≡ X̃ ′
tV̂X̃X̃(pt|t, jt)X̃t + ŵ(pt|t, jt).

It follows that we have

ṼX̃X̃(pt|t) ≡
∑

j
pjt|tV̂X̃X̃(pt|t, j), w(pt|t) ≡

∑
j
pjt|tŵ(pt|t, j).

Although we find the optimal policies from the dual problem, in order to measure true expected

losses we are interested in the value function for the primal problem (with the original, unmodified

loss function). This value function, with the period loss function EtL(Xt, xt, it, jt) rather than

EtL̃(X̃t, zt, it, γt, jt, εt), satisfies

V (st) ≡ Ṽ (st)− Ξ′t−1

1
δ

∑

j

pjt|tHj

∫
x(st, j, εt)ϕ(εt)dεt

= Ṽ (st)− Ξ′t−1

1
δ

∑

j

pjt|tHjx(st, j, 0) (2.19)

(where the second equality follows since x(st, jt, εt) is linear in εt for given st and jt). It is quadratic

in X̃t for given pt|t,

V (st) ≡ X̃ ′
tVX̃X̃(pt|t)X̃t + w(pt|t)

(the scalar w(pt|t) in the primal value function is obviously identical to that in the dual value

function). This is the value function conditional on X̃t and pt|t after Xt has been observed but

before xt has been observed, taking into account that jt and εt are not observed. Hence, the second

term on the right side of (2.19) contains the expectation of Hjtxt conditional on that information.9

Svensson and Williams [17] and [18] present algorithms to compute the solution and the primal

and dual value functions for the no-learning case. For future reference, we note that the value

function for the primal problem also satisfies

V (st) ≡
∑

j
pjt|tV̌ (st, j),

where the conditional value function, V̌ (st, jt), satisfies

V̌ (st, j) =
∫ {

L[Xt, x(st, j, εt), i(st), j]
+ δ

∑
k PjkV̌ [ĝ(st, j, εt, k, εt+1), k]

}
ϕ(εt)ϕ(εt+1)dεtdεt+1 (j ∈ Nj). (2.20)

9 To be precise, the observation of Xt, which depends on C1jtεt, allows some inference of εt, εt|t. xt will depend on
jt and on εt, but on εt only through C2jtεt. By assumption C1jεt and C2kεt are independent. Hence, any observation
of Xt and C1jεt does not convey any information about C2jεt, so EtC2jtεt = 0.

9



2.5 Adaptive optimal policy

Consider now the case of adaptive optimal policy, where the policymaker uses the same policy

function as in the no-learning case, but each period updates the probabilities that this policy is

conditioned on. This case is thus simple to implement recursively, as we have already discussed how

to solve for the optimal decisions and below we show how to update probabilities. However, the

ex-ante evaluation of expected loss is more complex, as we show below. In particular, we assume

that C2jt 6≡ 0 and that both εt and jt are unobservable. The estimate pt|t is the result of Bayesian

updating, using all information available, but the optimal policy in period t is computed under

the perceived updating equation (2.7). That is, the fact that the policy choice will affect future

pt+τ |t+τ and that future expected loss will change when pt+τ |t+τ changes is disregarded. Under the

assumption that the expectations on the left side of (2.2) are conditional on (2.7), the variables zt,

it, γt, and xt in period t are still determined by (2.16) and (2.17).

In order to determine the updating equation for pt|t, we specify an explicit sequence of infor-

mation revelation as follows, in no less than nine steps. The timing assumptions are necessary in

order to spell out the appropriate conditioning for decisions and updating of beliefs.

First, the policymaker and the private sector enters period t with the prior pt|t−1. They know

Xt−1, xt−1 = x(st−1, jt−1, εt−1), zt−1 = z(st−1), it−1 = i(st−1), and Ξt−1 = γ(st−1) from the

previous period.

Second, in the beginning of period t, the mode jt and the vector of shocks εt are realized. Then

the vector of predetermined variables Xt is realized according to (2.1).

Third, the policymaker and the private sector observe Xt. They then know X̃t ≡ (X ′
t,Ξ

′
t−1)

′.

They do not observe jt or εt

Fourth, the policymaker and the private sector update the prior pt|t−1 to the posterior pt|t

according to Bayes Theorem and the updating equation

pjt|t =
ϕ(Xt|jt = j,Xt−1, xt−1, it−1, pt|t−1)

ϕ(Xt|Xt−1, xt−1, it−1, pt|t−1)
pjt|t−1 (j ∈ Nj), (2.21)

where again ϕ(·) denotes a generic density function.10 Then the policymaker and the private sector

know st ≡ (X̃ ′
t, p

′
t|t)

′.

Fifth, the policymaker solves the dual optimization problem, determines it = i(st), and imple-

ments/announces the instrument setting it.
10 The policymaker and private sector can also estimate the shocks εt|t as εt|t =

P
j pjt|tεjt|t, where εjt|t ≡

Xt −A11jXt−1 −A12jxt−1 −B1jit−1 (j ∈ Nj). However, because of the assumed independence of C1jεt and C2kεt,
j, k ∈ Nj , we do not need to keep track of εjt|t.
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Sixth, the private-sector (and policymaker) expectations,

zt = EtHjt+1xt+1 ≡ E[Hjt+1xt+1 | st],

are formed. In equilibrium, these expectations will be determined by (2.16). In order to understand

their determination better, we look at this in some detail.

These expectations are by assumption formed before xt is observed. The private sector and the

policymaker know that xt will in equilibrium be determined in the next step according to (2.17).

Hence, they can form expectations of the soon-to-be determined xt conditional on jt = j,11

xjt|t = x(st, j, 0). (2.22)

The private sector and the policymaker can also infer Ξt from

Ξt = γ(st). (2.23)

This allows the private sector and the policymaker to form the expectations

zt = z(st) = Et[Hjt+1xt+1 | st] =
∑

j,k
Pjkpjt|tHkxk,t+1|jt, (2.24)

where

xk,t+1|jt =
∫

x







A11kXt + A12kx(st, j, εt) + B1ki(st)
Ξt

P ′pt|t


 , k, εt+1


ϕ(εt)ϕ(εt+1)dεtdεt+1

= x







A11kXt + A12kx(st, j, 0) + B1ki(st)
Ξt

P ′pt|t


 , k, 0


 ,

where we have exploited the linearity of xt = x(st, jt, εt) and xt+1 = x(st+1, jt+1, εt+1) in εt and

εt+1. Note that zt is, under AOP, formed conditional on the belief that the probability distribution

in period t + 1 will be given by pt+1|t+1 = P ′pt|t, not by the true updating equation that we are

about to specify.

Seventh, after the expectations zt have been formed, xt is determined as a function of Xt, zt,

it, jt, and εt by (2.10).

Eight, the policymaker and the private sector then use the observed xt to update pt|t to the new

posterior p+
t|t according to Bayes Theorem, via the updating equation

p+
jt|t =

ϕ(xt|jt = j, Xt, zt, it, pt|t)
ϕ(xt|Xt, zt, it, pt|t)

pjt|t (j ∈ Nj). (2.25)

11 Note that 0 instead of εjt|t enters above. This is because the inference εjt|t above is inference about C1jεt, whereas
xt depends on εt through C2jεt. Since we assume that C1jεt and C2jεt are independent, there is no inference of C2jεt

from observing Xt. Hence, EtC2jtεt ≡ 0. Because of the linearity of xt in εt, the integration of xt over εt results in
x(st, jt, 0t).
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Ninth, the policymaker and the private sector then leave period t and enter period t + 1 with

the prior pt+1|t given by the prediction equation

pt+1|t = P ′p+
t|t. (2.26)

In the beginning of period t + 1, the mode jt+1 and the vector of shocks εt+1 are realized, and

Xt+1 is determined by (2.1) and observed by the policymaker and private sector. The sequence of

the nine steps above then repeats itself. For more detail on the explicit densities in the updating

equations (2.21) and (2.25) see Svensson and Williams [18].

The transition equation for pt+1|t+1 can be written

pt+1|t+1 = Q(st, zt, it, jt, εt, jt+1, εt+1), (2.27)

where Q(st, zt, it, jt, εt, jt+1, εt+1) is defined by the combination of (2.21) for period t+1 with (2.13)

and (2.26). The equilibrium transition equation for the full state vector is then given by

st+1 ≡



Xt+1

Ξt

pt+1|t+1


 = ḡ(st, jt, εt, jt+1, εt+1)

≡



A11jt+1Xt + A12jt+1x(st, jt, εt) + B1jt+1i(st) + C1jt+1εt+1

γ(st)
Q(st, z(st), i(st), jt, εt, jt+1, εt+1)


 , (2.28)

where the third row is given by the true updating equation (2.27) together with the policy function

(2.16). Thus, we note that, in this AOP case, there is a distinction between the “perceived”

transition and equilibrium transition equations, (2.15) and (2.18), which in the bottom block include

the perceived updating equation (2.7), and the “true” equilibrium transition equation, (2.28), which

replaces the perceived updating equation (2.7) with the true updating equation (2.27).

Note that V (st) in (2.19), which is subject to the perceived transition equation, (2.15), does

not give the true (unconditional) value function for the AOP case. This is instead given by

V̄ (st) ≡
∑

j
pjt|tV̌ (st, j),

where the true conditional value function, V̌ (st, jt), satisfies

V̌ (st, j) =
∫ {

L[Xt, x(st, j, εt), i(st), j]
+ δ

∑
k PjkV̌ [ḡ(st, j, εt, k, εt+1), k]

}
ϕ(εt)ϕ(εt+1)dεtdεt+1 (j ∈ Nj). (2.29)

That is, the true value function V̄ (st) takes into account the true updating equation for pt|t, (2.27),

whereas the optimal policy, (2.16), and the perceived value function, V (st) in (2.19), are conditional
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on the perceived updating equation (2.7) and thereby the perceived transition equation (2.15). Note

also that V̄ (st) is the value function after X̃t has been observed but before xt is observed, so it

is conditional on pt|t rather than p+
t|t. Since the full transition equation (2.28) is no longer linear

due to the belief updating (2.27), the true value function V̄ (st) is no longer quadratic in X̃t for

given pt|t. Thus, more complex numerical methods are required to evaluate losses in the AOP case,

although policy is still determined simply as in the NL case.

As we discuss in Svensson and Williams [18], the difference between the true updating equation

for pt+1|t+1, (2.27), and the perceived updating equation (2.7) is that, in the true updating equation,

pt+1|t+1 becomes a random variable from the point of view of period t, with mean equal to pt+1|t.

This is because pt+1|t+1 depends on the realization of jt+1 and εt+1. Thus Bayesian updating

induces a mean-preserving spread over beliefs, which in turn sheds light on the gains from learning.

If the conditional value function V̌ (st, jt) under NL is concave in pt|t for given X̃t and jt, then by

Jensen’s inequality the true expected future loss under AOP will be lower than the true expected

future loss under NL. That is, the concavity of the value function in beliefs means that learning

leads to lower losses. While it likely that V̌ is indeed concave, as we show in applications, it need

not be globally so and thus learning need not always reduce losses. In some cases the losses incurred

by increased variability of beliefs may offset the expected precision gains. Furthermore, under BOP,

it may be possible to adjust policy so as to further increase the variance of pt|t, that is, achieve a

mean-preserving spread which might further reduce the expected future loss.12 This amounts to

optimal experimentation.

2.6 Bayesian optimal policy

Finally, we consider the BOP case, when optimal policy is determined while taking the updating

equation (2.27) into account. That is, we now allow the policymaker to choose it taking into account

that his actions will affect pt+1|t+1, which in turn will affect future expected losses. In particular,

experimentation is allowed and is optimally chosen. For the BOP case, there is hence no distinction

between the “perceived” and “true” transition equation.
12 Kiefer [10] examines the properties of a value function, including concavity, under Bayesian learning for a simpler

model without forward looking variables.
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The transition equation for the BOP case is:

st+1 ≡



Xt+1

Ξt

pt+1|t+1


 = g(st, zt, it, γt, jt, εt, jt+1, εt+1)

≡



A11jt+1Xt + A12jt+1 x̃(st, zt, it, jt, εt) + B1jt+1it + C1jt+1εt+1

γt

Q(st, zt, it, jt, εt, jt+1, εt+1)


 . (2.30)

Then the dual optimization problem can be written as (2.12) subject to the above transition

equation (2.30). However, in the Bayesian case, matters simplify somewhat, as we do not need to

compute the conditional value functions V̂ (st, jt), which we recall were required due to the failure

of the law of iterated expectations in the AOP case. We note now that the second term on the

right side of (2.12) can be written as

EtV̂ (st+1, jt+1) ≡ E
[
V̂ (st+1, jt+1)

∣∣∣ st

]
.

Since, in the Bayesian case, the beliefs do satisfy the law of iterated expectations, this is then the

same as

E
[
V̂ (st+1, jt+1)

∣∣∣ st

]
= E

[
Ṽ (st+1)

∣∣∣ st

]
.

See Svensson and Williams [18] for a proof.

Thus, the dual Bellman equation for the Bayesian optimal policy is

Ṽ (st) = max
γt

min
(zt,it)

Et{L̃(X̃t, zt, it, γt, jt, εt) + δṼ [g(st, zt, it, γt, jt, εt, jt+1, εt+1)]}

≡ max
γt

min
(zt,it)

∑
j
pjt|t

∫ [
L̃(X̃t, zt, it, γt, j, εt)
+ δ

∑
k PjkṼ [g(st, zt, it, γt, j, εt, k, εt+1)]

]
ϕ(εt)ϕ(εt+1)dεtdεt+1,

(2.31)

where the transition equation is given by (2.30).

The solution to the optimization problem can be written

ı̃t ≡



zt

it
γt


 = ı̃(st) ≡




z(st)
i(st)
γ(st)


 = F (X̃t, pt|t) ≡




Fz(X̃t, pt|t)
Fi(X̃t, pt|t)
Fγ(X̃t, pt|t)


 , (2.32)

xt = x(st, jt, εt) ≡ x̃(Xt, z(st), i(st), jt, εt) ≡ Fx(X̃t, pt|t, jt, εt). (2.33)

Because of the nonlinearity of (2.27) and (2.30), the solution is no longer linear in X̃t for given pt|t.

The dual value function, Ṽ (st), is no longer quadratic in X̃t for given pt|t. The value function of
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the primal problem, V (st), is given by, equivalently, (2.19), (2.29) (with the equilibrium transition

equation (2.28) with the solution (2.32)), or

V (st) =
∑

j

pjt|t

∫ {
L[Xt, x(st, j, εt), i(st), j]
+ δ

∑
k PjkV [ḡ(st, j, εt, k, εt+1)]

}
ϕ(εt)ϕ(εt+1)dεtdεt+1. (2.34)

It it is also no longer quadratic in X̃t for given pt|t. Thus, more complex and detailed numerical

methods are necessary in this case to find the optimal policy and the value function. Therefore

little can be said in general about the solution of the problem. Nonetheless, in numerical analysis

it is very useful to have a good starting guess at a solution, which in our case comes from the AOP

case. In our examples below we explain in more detail how the BOP and AOP cases differ, and

what drives the differences.

2.7 Observable Modes

In this paper we largely focus on the cases where the policymakers do not observe the current mode,

which is certainly the more relevant case when analyzing model uncertainty. However some situa-

tions may arguably be better modeled by observable shifts in modes, as in most of the econometric

literature on regime switching models. Moreover one way to gauge the effects of uncertainty in the

a model is to move from a constant-coefficient specification to one in which the parameters are ob-

servable but may vary. (That is, the current values of parameters are known, but future values are

uncertain.) We use the observable mode case for this reason, to analyze implications of uncertainty

on policy. In Svensson and Williams [17] we develop simple algorithms for observable changes in

modes, which play off the fact that conditional on the mode the evolution of the economy is linear

and preferences are quadratic. Thus the optimal policy consists of a mode-dependent collection of

linear policy rules and can be written

it = FijtX̃t. (2.35)

for jt ∈ Nj .

3 Learning and experimentation in a simple New Keynesian model

3.1 The model

For our policy exercises, we consider a benchmark hybrid New Keynesian Phillips curve (see Wood-

ford [24] for an exposition):

πt = (1− ωjt)πt−1 + ωjtEtπt+1 + γjtyt + cεt (3.1)
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Here πt is the inflation rate, yt is the output gap, ωjt is a parameter reflecting the degree of forward-

looking behavior in price setting, and γjt is a composite parameter reflecting the elasticity of demand

and frequency of price adjustment. For simplicity, we assume that policymakers can directly control

the output gap yt. In another paper, Svensson and Williams [19] we consider optimal policy in

the standard two equation New Keynesian model which also includes a log-linearized consumption

Euler equation. Many of the same issues that we focus on here arise there as well, but the simpler

setting in the present paper allows us to focus more directly on the effects of uncertainty on policy.

We focus on two key sources of uncertainty in the New Keynesian Phillips curve. Our first

example considers the degree of forward-looking behavior in inflation. In the model, this translates

to uncertainty about ωj . If this parameter is large, inflation is largely determined by current shocks

and expectations of the future, while if ωj is small then there is a substantial exogenous inertia

in the inflation process. Our second example analyzes uncertainty about the slope of the Phillips

curve, as reflected in the parameter γj . This could reflect changes in the degree of monopolistic

competition (which also lead to varying markups) and/or changes in the degree of price stickiness.

In each example we look first at the effect of uncertainty, going from a constant-coefficient model

to a model with random coefficients. Then we analyze the effects of learning and experimentation

on policy and losses.

In both examples we use the following loss function,

Lt = π2
t + λy2

t , (3.2)

We set the loss function parameters as: δ = 0.98, λ = 0.1, and set the shock standard deviation to

c = 0.5. Even though different structural parameters vary in the two examples, both examples use

two modes and set the transition matrix to:

P =
[

0.98 0.02
0.02 0.98

]
.

In both examples we examine the value functions and optimal policies for this simple New Keynesian

model under no learning (NL), adaptive optimal policy (AOP), and Bayesian optimal policy (BOP).

We have one forward-looking variables (xt ≡ πt) and consequently one Lagrange multiplier (Ξt−1 ≡
Ξπ,t−1). We have one predetermined variable (Xt ≡ πt−1) and the estimated mode probabilities

(pt|t ≡ (p1t|t, p2t|t)′, of which we only need keep track of one, p1t|t). Thus, the value and policy

functions, V (st) and i(st), are all three dimensional (st = (πt−1,Ξπ,t−1, p1|t)′). For computational

reasons we are forced to restrict attention to relatively sparse grids with few points. The following
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Figure 3.1: Policies and losses from observable (Obs) and constant modes
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plots show two-dimensional slices of the value and policy functions, focusing on the dependence on

πt−1 and p1t|t (which we for simplicity denote by p1t in the figures). In particular, all of the plots

are for Ξπ,t−1 = 0.

3.2 Example 1: How forward-looking is inflation?

This example analyzes one of the main sources of uncertainty in the New Keynesian framework,

the degree to which inflation is a forward-looking variable responding to expectations of future

developments. Specifications which suggest that inflation has substantial exogenous persistence

have tended to fit better empirically, while perhaps being less rigorous in their micro-foundations.

In this example we see how uncertainty about the degree of forward-looking behavior, as indexed

by ωj , affects policy. Thus we assume that there are two modes, one more forward-looking which

has ω1 = 0.8 and the other more backward-looking with ω2 = 0.2. Note that with the transition

matrix P as specified above, this means E(ωj) = 0.5. For this example, we fix the slope parameter

at γ = 0.1.

In figure 3.1 we illustrate the effects of uncertainty on policy and losses. In the left panel, we

plot the two mode-dependent optimal policy functions for the MJLQ model with observable modes,

labeled “Obs 1” for mode 1 and “Obs 2” for mode 2. Here we see that the optimal policy is more

aggressive in the more backward-looking mode 2, as in response to a higher inflation the optimal

policy involves larger negative output gaps. The unconditional average policy is labeled “E(Obs)”

and shown with a solid line. For comparison, we also plot with a dotted line the constant-coefficient
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case where we set ω1 = ω2 = E(ωj) = 0.5. Here we see that the optimal policy under uncertainty

is more aggressive in responding to inflation movements than in the absence of uncertainty.

A common starting point for thinking about the effects of uncertainty on policy is Brainard’s

[3] classic analysis which suggested that uncertainty should make policy more cautious. However

Brainard worked in a static framework, and the source of uncertainty he analyzed was a slope

coefficient on how policy affects the economy. Our second example below is closer to Brainard’s,

and comes to similar conclusions. But in this example our results suggest, at least for this parame-

terization, that uncertainty about the dynamics of inflation leads to more aggressive policy. This

is similar to what Söderström [21] found in a backward-looking model.

The right panel of figure 3.1 plots the losses associated with the optimal policies in the different

cases. When inflation is more forward-looking, it is easier to control and so overall losses are lower

even with less aggressive policies. However uncertainty about the dynamics of inflation can have

significant effects on losses for moderate to high inflation levels. This is evident by comparing the

constant-coefficient and average observable curves, where we see that the loss nearly doubles at the

edges of the plot.

Now we keep the same specification, but make the more realistic assumption that the current

mode is not observed. Thus we analyze the effects of learning and experimentation on policy and

losses. The top two panels of figure 3.2 show losses under NL and BOP as functions of p1t. The

bottom two panels of the figure show the differences between losses under NL, AOP, and BOP.

Figure 3.3 shows the corresponding policy functions and their differences. The top two panels plot

the policy functions under AOP and BOP as a function of inflation. The AOP policy is linear in πt,

and clearly the BOP policy is nearly so. The bottom left panel plots the BOP policy as a function

of p1t, showing that policy is less aggressive (that is, smaller magnitude of response) the greater

is the probability of being in the more forward-looking mode 1. The bottom right panel shows

that the policy differences between AOP and BOP, the experimentation component of policy, are

incredibly small.

In Svensson and Williams [18] we show that learning implies a mean-preserving spread of the

random variable pt+1|t+1 (which is under learning a random variable from the vantage point of period

t). Hence, concavity of the value function under NL in p1t implies that learning is beneficial, since

then a mean-preserving spread reduces the expected future loss. However, we see in figure 3.2 that

the value function is actually slightly convex in p1t, so learning is not beneficial here. Consequently,

we see in figure 3.2 that AOP gives higher losses than NL. In contrast, for a backward-looking
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Figure 3.2: Losses and differences in losses from no learning (NL), adaptive optimal policy (AOP)

and Bayesian optimal policy (BOP)
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example in Svensson and Williams [18], the value function is concave and learning is beneficial.

Experimentation is beneficial here, as BOP does give lower losses than AOP, but the difference

is miniscule. So for this example, learning has sizeable effects on losses and is detrimental, while

experimentation is beneficial but has negligible effects.

Why would learning not be beneficial with forward-looking variables? It may at least partially

be a remnant of our assumption of symmetric beliefs and information between the private sector and

the policymaker. With backward-looking models, we have generally found that learning is beneficial.

However under our assumption of symmetric information and beliefs between the private sector

and the policymaker, both the private sector and the policymaker learn. The difference between

backward- and forward-looking models then comes from the way that private sector beliefs also

respond to learning. Having more reactive private sector beliefs may add volatility and make it

more difficult for the policymaker to stabilize the economy.
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Figure 3.3: Optimal policies and their differences under adaptive optimal policy (AOP) and

Bayesian optimal policy (BOP)
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3.3 Example 2: What is the slope of the Phillips curve?

This example analyzes the other main source of uncertainty in the New Keynesian Phillips curve,

the extent to which inflation responds to fluctuations in the output gap. Once again we assume

that there are two modes, now one in which the Phillips curve is flatter which has γ1 = 0.05 and the

other has a steeper curve with γ2 = 0.25. Note that with the transition matrix P as specified above,

this means E(γj) = 0.15. For this example, we fix the forward-looking expectations parameter at

ω = 0.5. Since policymakers once again directly control the output gap, this example is a forward-

looking counterpart to the classic Brainard [3] analysis of uncertainty about the effectiveness of the

control.

In figure 3.4 we illustrate the effects of uncertainty on policy and losses. As in the previous

example, the left panel plots the two mode-dependent optimal policy functions for the MJLQ

model with observable modes. Here we see that the MJLQ optimal policies in both modes are less

aggressive than the constant-coefficient case. Thus our results here are in accord with Brainard’s

— uncertainty about the slope of the Phillips curve leads to more cautious policy.
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Figure 3.4: Policies and losses from observable (Obs) and constant modes
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The right panel of figure 3.4 plots the losses associated with the optimal policies in the different

cases. When the Phillips curve is steeper, inflation responds more to the output gap making it easier

to control. Thus overall losses are lower in mode 2 even with less aggressive policies. However once

again uncertainty about this key parameter can have significant effects on losses for high inflation

levels. This is evident by comparing the constant-coefficient and average observable curves, where

we see that the loss nearly doubles at the edges of the plot.

Now we again keep the same specification, but make the more realistic assumption that the

current mode is not observed. The top two panels of figure 3.5 show losses under NL and BOP

as functions of p1t. The bottom two panels of the figure show the differences between losses under

NL, AOP, and BOP. We see in figure 3.2 that the value function is once again slightly convex in

p1t, so learning is not beneficial here. Consequently, we see in the bottom right panel of figure

3.2 that AOP gives higher losses than NL. Thus once again, the additional volatility outweighs the

improved inference, and makes learning detrimental in this example. Experimentation is once again

beneficial, as BOP gives lower losses than AOP. And while the effects of experimentation are an

order of magnitude smaller than the effects of learning, the gains from recognizing the endogeneity

of information are non-negligible here. Thus for uncertainty about the slope of the Phillips curve,

policymakers may have an incentive to experiment — that is, to take actions to mitigate future

uncertainty.

Figure 3.6 shows the corresponding policy functions and their differences. The top two panels

plot the policy functions under AOP and BOP as a function of inflation. The AOP policy is linear
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Figure 3.5: Losses and differences in losses from no learning (NL), adaptive optimal policy (AOP)

and Bayesian optimal policy (BOP)
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in πt, and clearly the BOP policy is nearly so, although some differences are evident at the edge of

the plot. The bottom left panel plots the BOP policy as a function of p1t, showing that the policy

function is relatively flat in this dimension. The bottom right panel plot the difference between the

AOP and BOP policy functions, which shows that here the experimentation motive leads toward

less aggressive policy. This is counter to an example in Svensson and Williams [18], who show

that in a backward-looking model experimentation may lead to more aggressive policy. There

policy makes outcomes more dispersed in order to sharpen inference over the modes. However here

because learning is detrimental, the experimentation component of policy seeks to slow the effects

of learning by making outcomes less dispersed. This serves to illustrate that the experimentation

component of policy need not be associated with wild or aggressive policy action, but rather it

optimally takes into account how information influences the targets of policy.
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Figure 3.6: Optimal policies and their differences under adaptive optimal policy (AOP) and

Bayesian optimal policy (BOP)
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4 Conclusion

In this paper, we have presented a relatively general framework for analyzing model uncertainty and

the interactions between learning and optimization. While this is a classic issue, very little to date

has been done for systems with forward-looking variables, which are essential elements of modern

models for policy analysis. Our specification is general enough to cover many practical cases of

interest, but yet remains relatively tractable in implementation. This is definitely true for cases

when decision makers do not learn from the data they observe (our case of no learning, NL) or when

they do learn but do not account for learning in optimization (our case of adaptive optimal policy,

AOP). In both of these cases, we have developed efficient algorithms for solving for the optimal

policy, which can handle relatively large models with multiple modes and many state variables.

However, in the case of the Bayesian optimal policy (BOP), where the experimentation motive is

taken into account, we must solve more complex numerical dynamic programming problems. Thus

to fully examine optimal experimentation we are haunted by the curse of dimensionality, forcing us

to study relatively small and simple models.
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Thus, an issue of much practical importance is the size of the experimentation component of

policy, and the losses entailed by abstracting from it. While our results in this paper are far from

comprehensive, they suggest that in practical settings the experimentation motive may not be a

concern. The above and similar examples that we have considered indicate that the benefits of

learning (moving from NL to AOP) may be substantial, whereas the benefits from experimentation

(moving from AOP to BOP) are modest or even insignificant. If this preliminary finding stands

up to scrutiny, experimentation in economic policy in general and monetary policy in particular

may not be very beneficial, in which case there is little need to face the difficult ethical and other

issues involved in conscious experimentation in economic policy. Furthermore, the AOP is much

easier to compute and implement than the BOP. To have this truly be a robust implication, more

simulations and cases need to be examined.
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