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Abstract

Frequently used so-called forecast-based instrument rules are shown to correspond to a
problematic intertemporal loss function. This loss function is problematic because it is time-
inconsistent, arbitrary, and (for the most common form of forecast-based instrument rules)
does not incorporate any explicit concern for output-gap stability.
The time-inconsistency of the loss function arises because it does not have exponential

discounting. This implies that in‡ation paths that are optimal ex ante will not be realized
ex post. This is a source of ine¢ciency separate from the one discussed in the literature
initiated by Kydland and Prescott and by Barro and Gordon.
It follows that forecast-based instrument rules are not consistent with a conventional

intertemporal loss function corresponding to ‡exible in‡ation targeting.
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1 Introduction

In the monetary-policy literature, a frequently used class of reaction functions lets the monetary-

policy instrument in period t, a short interest rate it, respond to an equilibrium in‡ation forecast

and a lagged value of itself,

it = ¹f + f¼(¼t+T;t ¡ ¼¤) + fiit¡1; (1.1)

where ¼t+T;t denotes a T -period-ahead in‡ation forecast conditional on information available in

period t, ¼¤ is a constant in‡ation target, and ¹f is a constant and f¼ and fi are constant response

coe¢cients. To be consistent with a steady state, the constant ¹f has to ful…ll ¹f = ¹{=(1 ¡ fi),
where ¹{ is the steady-state interest rate. This reaction function is promoted by, for instance,

Batini and Haldane [2], and similar reaction functions are used in the Quarterly Projection

Model (QPM) of the Bank of Canada [6] and the Forecasting and Policy System (FPS) of the

Reserve Bank of New Zealand [4].1 A somewhat broader class of reaction functions would also

involve responses to an output-gap forecast, for instance, with the same horizon T ,

it = ¹f + f¼(¼t+T;t ¡ ¼¤) + fxxt+T;t + fiit¡1; (1.2)

where fx is a response coe¢cient and xt+T;t is a T -period-ahead output-gap forecast.

This class of reaction functions has been referred to as forecast-based (instrument) rules

(Batini and Haldane [2]). For a forecast-horizon T su¢ciently long, the forecasts depend on

the instrument and are endogenous. For such a horizon, the forecasts in most applications have

been taken to be equilibrium, or “rule-consistent” forecasts, meaning that they are endogenous

rational-expectations forecasts conditional on an intertemporal equilibrium of the model.2 Thus,

this reaction function is really an equilibrium condition that has to be satis…ed by simultaneously

determined variables. This is called an implicit instrument rule in Rudebusch and Svensson [13],

Svensson [16] and Svensson andWoodford [19] (reaction functions where the instrument responds

to predetermined variables are called explicit instrument rules).

This paper shows that forecast-based instrument rules of the form (1.1) or (1.2) correspond to

a problematic and arbitrary intertemporal loss function. That loss function is time-inconsistent,

in the sense that plans that are optimal relative to the loss function ex ante are not carried

out ex post. This is because the loss function does not have exponential discounting, which, as
1 A similar reaction function is also used by Black, Macklem and Rose [5].
2 Another possibility is to let the forecasts depend on an exogenous interest rate path, for instance a constant

unchanged interest rate, see Jansson and Vredin [9] and Rudebusch and Svensson [13].
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shown in the classic paper of Strotz [15], is a necessary condition for time-consistent preferences.

The time-inconsistency of the loss function is a source of ine¢ciency separate from the one in

the usual time-consistency problem.

In the traditional literature on the time-consistency problem following Kydland and Prescott

[10] and Barro and Gordon [1], the source of the time-consistency problem is the time-inconsisten-

cy of the constraints of the optimization problem, the fact that the marginal rates of transforma-

tion between the target variables are di¤erent ex ante and ex post (typically, increased in‡ation

increases employment ex post but not ex ante). For a loss function without exponential discount-

ing, there is a separate time-consistency problem, due to the time-inconsistency of the objective

function in the optimization problem, the fact that the marginal rates of substitution between

the target variables are di¤erent ex ante and ex post. Clearly, time-consistent preferences is a

minimum requirement for a monetary-policy loss function.

Furthermore, the commonly used form (1.1) of forecast-based instrument rules implies a loss

function without any explicit weight on output-gap stability, and is hence more remote from the

idea of “‡exible” in‡ation targeting in the sense of some concern also for output-gap stability.

(The form (1.2) involves some concern for output-gap stability, though.)

Section 2 speci…es the conventional intertemporal loss function corresponding to ‡exible

in‡ation targeting and discusses some of its properties. Section 3 derives the loss function

corresponding to forecast-based instrument rules and discusses its properties. Section 4 in

addition discusses the practical performance of forecast-based instrument rules. Appendix A

contains some technical details.

2 A loss function over conditional forecasts corresponding to ‡exible in‡ation

targeting

In‡ation targeting involves stabilizing in‡ation around an in‡ation target. In practice, as dis-

cussed in a number of recent contributions (see, for instance, Federal Reserve Bank of Kansas

City [7]), in‡ation targeting is “‡exible” in‡ation targeting, in the sense that it also involves

some concern about the stability of the real economy.3 These objectives are conventionally and

conveniently expressed as an intertemporal loss function, to be minimized in period t, consisting

3 I abstract from independent objective to smooth or stabilize interest rates, which objective is di¢cult to
rationalize. See Sack and Wieland [14] for a recent discussion of interest-rate smoothing.
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of the expected sum of discounted current and future losses,

Lt = (1¡ ±)Et 1
2

1X
¿=0

±¿
h
(¼t+¿ ¡ ¼¤)2 + ¸x2t+¿

i
: (2.1)

Here Et denotes rational expectations conditional on the central bank’s information in period t

about the state of the economy and the transmission mechanism of monetary policy, ± (0 < ± < 1)

is a discount factor, ¼t ¡ ¼¤ is the in‡ation “gap”, where ¼t is (the rate of) in‡ation in period t
and ¼¤ is a given in‡ation target, xt ´ yt ¡ y¤t is the output gap, where yt is (log) output and
y¤t is (log) potential output (the (log) of the natural output level), and ¸ > 0 is a given weight

on output-gap stabilization. “Strict” in‡ation targeting would be the (unrealistic) special case

of ¸ = 0. Thus, for ¸ > 0, we have ‡exible in‡ation targeting and both in‡ation and the output

gap are target variables (target variables in the sense of entering the loss function).4

Note that in the limit when the discount factor approaches unity, ± ! 1, (2.1) can be shown

to equal

Lt =
1

2
f(E[¼t]¡ ¼¤)2 +Var[¼t] + ¸E[xt]2 + ¸Var[xt]g:

Thus, if E[¼t] = ¼¤ and E[xt] = 0, the intertemporal loss function is

Lt =
1

2
(Var[¼t] + ¸Var[xt]); (2.2)

the weighted unconditional variances, which is frequently used as a loss function for monetary

policy.5

Suppose the central bank has a linear model of the transmission mechanism. Let ¼t ´
f¼t+¿;tg1¿=0 and xt ´ fxt+¿;tg1¿=0 be conditional mean forecasts of in‡ation and the output
gap, conditional on information available in period t, the bank’s model of the transmission

mechanism, the bank’s mean forecast of exogenous variables, and a given instrument-rate path

it ´ fit+¿;tg1¿=0. The conditional forecasts of in‡ation and the output gap and the corresponding
instrument-rate path are given by the bank’s forecasting model, which results from the bank’s

model of the transmission mechanism of monetary policy, when endogenous and exogenous

4 Note that, since the intertemporal loss function is the expected discounted future losses, this formulation
includes the realistic case when potential output, y¤t , is unobservable and has to be estimated.

5 A common way of evaluating the outcome of alternative instrument rules is to plot the result in a graph
with unconditional in‡ation variance on the horisontal axis and unconditional output-gap variance on the vertical
axis and then examine the result in relation to the “Taylor curve” (see Taylor [20]) of e¢cient combinations of
the two variances. This is of course equivalent to using a loss function of the form (2.2) with di¤erent relative
weights ¸ ¸ 0. Indeed, a common way to …nd the Taylor curve is to optimize over a class of reaction functions
for values of ¸ from zero to in…nity. See, for instance, Rudebusch and Svensson [13] and several other papers in
Taylor [21]. (Taylor [20] plotted the standard deviations along the axes; plotting the variances has the advantage
that the (negative) slope at a preferred point on the Taylor curve can be interpreted as revealing 1=¸ in the loss
function above.)
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variables are replaced by their conditional means, conditional on the information available in

period t.6

Because of the certainty-equivalence that holds under a linear model and a quadratic loss

function, we can substitute the conditional forecasts into the intertemporal loss function (2.1)

and consider the intertemporal forecast over forecasts,

Lt;t ´ (1¡ ±)1
2

1X
¿=0

±¿
h
(¼t+¿;t ¡ ¼¤)2 + ¸x2t+¿;t

i
: (2.3)

The decision problem has now been modi…ed from the stochastic optimization problem of min-

imizing (2.1) subject to the bank’s stochastic model of the transmission mechanism to the

deterministic optimization problem of minimizing (2.3) subject to the bank’s forecasting model

(which, given the forecast of exogenous variables, is deterministic). Because of the certainty-

equivalence, the intertemporal loss functions (2.1) and (2.3) will only di¤er by a constant (con-

sisting of the discounted expected future unanticipated squared shocks to in‡ation and the

output gap), so optimization over (2.1) and (2.3) will lead to the same policy.

The intertemporal loss functions (2.1) and (2.3) have some desirable properties:

1. There is substitution between in‡ation variability and output-gap variability, correspond-

ing to ‡exible in‡ation targeting. This is easy to see in the limit case, when ± ! 1 and

the loss function (2.2) can be written

Lt =
1

2
(Var[¼t+¿ ¡ ¼¤] + ¸Var[xt+¿ ]);

where Var[¼t+¿ ¡ ¼¤] and Var[xt+¿ ] denote the unconditional variance of the future in-
‡ation and output gaps. Then the relative weight ¸ can be seen as the marginal rate

of substitution of in‡ation-gap variability for output-gap variability, the (negative of the)

derivative dVar[¼t+¿ ¡ ¼¤]=dVar[xt+¿ ] when the intertemporal loss is held constant, that
is,

¡ dVar[¼t+¿ ¡ ¼
¤]

dVar[xt+¿ ]

¯̄̄̄
dLt=0

= ¸:

2. There is intertemporal substitution between in‡ation and output gaps in di¤erent periods.

Di¤erentiating (2.3) with respect to a change in the in‡ation-gap forecast for period t+T1,

6 Constructing conditional forecasts in a backward-looking model (that is, a model without forward-looking
variables) is straightforward. Constructing such forecasts in a forward-looking model raises some speci…c di¢-
culties, which are explained and resolved in the appendix of the working-paper version of Svensson [16]. The
conditional forecasts for an arbitrary interest-rate path derived there assume that the interest-rate paths are
“credible”, that is, anticipated and allowed to in‡uence the forward-looking variables.
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d(¼t+T1;t ¡ ¼¤), and the output-gap forecast for period t + T2, dxt+T2;t, and holding the
resulting change in the intertemporal loss constant, dLt;t = 0, we get the marginal rate

of substitution of the in‡ation-gap forecast in period t+ T1 for the output-gap forecast in

period t+ T2,

¡ d(¼t+T1;t ¡ ¼
¤)

dxt+T2;t

¯̄̄̄
¯
dLt;t=0

=
±T2¡T1xt+T2;t
¼t+T1;t ¡ ¼¤

:

3. The loss function has exponential discounting, which is a necessary condition for time-

consistent preferences, as noted by Strotz [15]: The marginal rate of substitution of target

variables in period t+ T1 for target variables in period t+T2 is independent of the period

t. Consider the in‡ation-gap forecasts for period t+ T1 and t+ T2. The marginal rate of

subsitution of the in‡ation-gap forecast for period t+ T1 for the in‡ation-gap forecast for

period t+ T2 is

¡ d(¼t+1;t ¡ ¼
¤)

d(¼t+2;t ¡ ¼¤)

¯̄̄̄
¯
dLt;t=0

=
±T2¡T1(¼t+T2;t ¡ ¼¤)

¼t+T1;t ¡ ¼¤
;

which is independent of period t. As Strotz observed, this requires exponential discounting

with a constant discount factor, which is the case for the loss functions (2.1) and (2.3).

Time-consistency of the loss function implies that future paths of the target variables that

are optimal when considered in a given period remain optimal when considered in later periods

(assuming that the constraints, the marginal rates of transformation, for the target variables

are time-consistent). Suppose that, in period t, the particular future in‡ation and output-gap

paths ¼̂t = f¼̂t+¿;tg1¿=0 and x̂t = fx̂t+¿;tg1¿=0 are optimal with respect to (2.3) in period t, Lt;t.
Consider the continuation of these in‡ation and output-gap paths in period t + s, s periods

later, denoted ¼̂t+s = f¼̂t+¿;t+sg1¿=s and x̂t+s = fx̂t+¿;t+sg1¿=s, where ¼̂t+¿;t+s = ¼̂t+¿;t and

x̂t+¿;t+s = x̂t+¿;t. Time-consistency of the loss function then implies the intuitive property that

the paths ¼̂t+s and x̂t+s remain optimal when evaluated with the loss function (2.3) in period

t+s, Lt+s;t+s. Thus, the mere passage of time does not a¤ect the optimality of the continuation

of given paths of in‡ation and output.

In contrast, a lack of time-consistency of the loss function implies that the mere passage of

time results in the continuation of the same in‡ation and output-gap paths not being optimal

(even if the constraints, the marginal rates of transformation between the target variables are

time-consistent). This is very counterintuitive, and time-consistency of the loss function seems

to be a minimum requirement for sensible intertemporal preferences for a central bank.7

7 Utility functions with so-called hyperbolic discounting (see, for instance, Laibson [11]) are time-inconsistent

5



3 The intertemporal loss function corresponding to a forecast-based instru-

ment rule

The forecast-based instrument rule implies that the instrument path, it, and the in‡ation and

output gap forecasts, ¼t and xt, will be related by

it+¿;t = ¹f + f¼(¼t+T+¿;t ¡ ¼¤) + fxxt+T+¿;t + fiit+¿¡1;t (3.1)

for ¿ ¸ 0. Suppose that (3.1) together with the bank’s forecasting model result in unique in‡ation
and output gap forecasts and instrument-rate path. Let the corresponding impulse responses of

in‡ation and the output gap for an impulse to it in period t be denoted f@¼t+¿;t=@itg1¿=0 and
f@xt+¿;t=@itg1¿=0, respectively, so @¼t+¿;t=@it denotes the impulse response of ¼t+¿ to an impulse
to it in period t, etc.8

For what implied loss function would (3.1) be optimal? That is, for what implied loss function

would (3.1) be a …rst-order condition for an optimum? The intertemporal loss function in period

t corresponding to (3.1) for ¿ = 0 turns out to be

~Lt;t ´ 1

2
±T [(¼t+T;t ¡ ¼¤)2 + ¸x2t+T;t] + ¸i(it;t ¡¹{)2 + ¸¢i(it;t ¡ it¡1;t)2; (3.2)

where ¹{ is the steady-state instrument rate and the weights ¸, ¸i and ¸¢i are given by

¹f ´ ¸i
¸i + ¸¢i

¹{; f¼ ´ ¡ ±T@¼t+T;t=@it
¸i + ¸¢i

; fx ´ ¡ ±T¸@xt+T;t=@it
¸i + ¸¢i

; and fi ´ ¸¢i
¸i + ¸¢i

: (3.3)

In order to show this, we can use that the derivative of (3.2) with respect to an impulse to it;t

must be zero. This results in

±T
@¼t+T;t
@it

(¼t+T;t ¡ ¼¤) + ±T¸@xt+T;t
@it

xt+T;t + ¸i(it;t ¡¹{) + ¸¢i(it;t ¡ it¡1;t) = 0: (3.4)

Solving (3.4) for it;t results in an equilibrium condition exactly like (3.1) for ¿ = 0, where the

parameters ¹f , f¼, fx and fi are given by (3.3).

Thus, take as given the parameters ¹f , f¼, fx, fi (and hence ¹{) and T of the forecast-based

instrument rule (3.1), as well as the resulting equilibrium impulse responses @¼t+T;t=@it and

@xt+T;t=@it. Furthermore, normalize the parameters ¸, ¸i, ¸¢i and ± of the loss function in

some way; that is, add a condition that they have to ful…ll. For instance, suppose we …x ±,

0 < ± < 1. Given ±, T and @¼t+T;t=@it, the identity for f¼ in (3.3) allows us to determine the

and give rise to time-inconsistent plans, since they do not have exponential discounting.
8 That is, @¼t+¿;t=@it denotes the derivative of ¼t+¿;t with respect to a one-time shock to it.
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sum ¸i + ¸¢i. Given this sum, the identity for fi allows us to determine ¸i and ¸¢i. Finally,

given @xt+T;t=@i, the identity for fx allows us to determine ¸.

Thus, according to the loss function (3.2), in period t the central bank is concerned about

stabilizing the in‡ation and output gaps precisely T periods ahead (with the relative weight

¸ on output-gap stabilization), in addition to putting the weight ¸i on current interest-rate

stabilization and the weight ¸¢i on current interest-rate smoothing.

The loss function (3.2) is problematic for several reasons:

1. The loss function does not have exponential discounting, since it does not consist of an

exponentially discounted sum across periods. Indeed, there is no trade-o¤ between the

same variable in di¤erent periods. In period t, the central bank is only concerned with

stabilizing in‡ation and output gaps in period t+ T , that is, T periods ahead, in addition

to instrument stabilization and smoothing in the current period t. The bank is indi¤erent

to in‡ation- and output-gap stabilization in period t+ T + 1, for instance, as well as to

instrument stabilization and smoothing in period t+ 1. However, when making decisions

in the next period, period t+1, the bank will be concerned about in‡ation- and output-gap

stabilization precisely in period T+1, and instrument stabilization and smoothing precisely

in period t + 1 (and completely indi¤erent to in‡ation- and output-gap stabilization in

period t+ T ). This highlights the time-inconsistency of the preferences corresponding to

the loss function (3.2).

It follows that the equilibrium resulting from combining the forecast-based instrument

rule (3.1) with the model has to be interpreted as an equilibrium under discretionary

optimization in each period t, when the central bank anticipates that it will reoptimize

with the loss function (3.2) in period t+1 and hence choose the instrument rate according

to (3.1) in period t+ 1. Thus, the equilibrium can be seen as the result of choosing it so

as to minimize (3.2) in period t subject to (3.1) being followed in future periods.

2. Instrument stabilization and smoothing has a crucial role, in spite of the di¢culties in

…nding a rationale for such behavior. Thus, as is apparent in (3.4), the sum of the weights

¸i and ¸¢i must be nonzero for the parameters ¹f , f¼, fx and fi to be …nite and not

unbounded (and the sum must be positive to make intuitive sense). Furthermore, a value

of fi ful…lling 0 < fi < 1 requires both ¸i and ¸¢i positive (the case ¸i = 0, no instrument

stabilization objective, would lead to fi = 1).
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3. The forecast-based instrument rules used by Batini and Haldane [2] and the QPM [6] and

FPS [4] have fx = 0 and hence do not respond to any output-gap forecast. According to

(3.3), this implies ¸ = 0, that is, no preference for output-gap stabilization, counter to the

idea of ‡exible in‡ation targeting. Thus, any concern for output-gap stabilization then

enters only very indirectly, through a longer horizon T (which is usually taken to be 6–8

quarters in the previous references).

4. Finally, for given “reasonable” values of the parameters f¼, fx and fi, there is no guarantee

that the resulting weights ¸, ¸i and ¸¢i and discount factor ± are reasonable. It is easy to

calculate the weights and the discount factor and judge how reasonable they are, though,

once the impulse responses @¼t+T;t=@it and @xt+T;t=@it have been computed.

If this is not at least a theoretical requiem for forecast-based instrument rules, what is?

4 Practical performance

So, if there are severe, perhaps fatal, theoretical problems with forecast-based instrument rules,

what about the practical performance? Recently, Levin, Wieland and Williams [8] have, by

simulations in di¤erent macro models, examined the performance of forecast-based instrument

rules against other reasonable reaction functions. They …nd that its performance of forecast-

based instrument rules are rather inferior and nonrobust, when evaluated according to (2.1) or

the special case (2.2). This …nding is not surprising, given the result in the present paper that

an equilibrium with a forecast-based instrument rule corresponds to a discretionary equilibrium

with a very di¤erent loss function, (3.2).9

All together, the forecast-based instrument rule with equilibrium forecasts seems quite prob-

lematic, in spite of its entrenched position in the QPM of the Bank of Canada [6] and the FPS

of the Reserve Bank of New Zealand [4].10

9 In a recent paper, Batini, Harrison and Millard [3] examine a forecast-based and other instrument rules
in a model of an open economy. A forecast-based instrument rule of the form (1.1) with parameters similar to
those used in Batini and Haldane [2] (T = 5 quarters, f¼ = 5, fi = :5) works very badly in that model. An
optimized forecast-based instrument rule works well. However, the optimized horizon T is only one quarter. In
the Rudebusch and Svensson [13] model, such an instrument rule works very badly. Thus, the results of Batini,
Harrison and Millard [3] are hardly supportive of forecast-based instrument rules.
10 In my review of the operation of monetary policy in New Zealand, [17], I suggest that the Reserve Bank of

New Zealand consider alternatives to forecast-based instrument rules in the FPS, with reference to the problems
reported here.
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A The optimal equilibrium condition

If (1.1) is not an optimal …rst-order condition for the loss function (2.1), what is? What is the

optimal …rst-order condition for (2.3) and how does it di¤er from (3.1)?

Consider an equilibrium optimal for (2.3) and let f@¼t+¿;t=@itg1¿=0 and f@xt+¿;t=@itg1¿=0 be
corresponding impulse responses. A potential …rst-order-condition is that the derivative of (2.3)

with respect to an impulse to it;t will be zero, giving

1X
¿=0

±¿
·
@¼t+¿;t
@it

(¼t+¿;t ¡ ¼¤) + ¸@xt+¿;t
@it

xt+¿;t

¸
= 0: (A.1)

This is clearly di¤erent from (3.1), in that terms for all future periods appear and that no terms

with explicit instrument rates appear.

However, a bit of caution in the interpretation of this …rst-order condition is warranted. It

corresponds to an unanticipated one-time adjustment in the instrument rate in period t, which is

a meaningful experiment under discretionary optimization each period, but not under commit-

ment to a given reaction function. In the latter case, only anticipated one-time adjustments in

the instrument rate in period t are allowed. This instead correspond to the …rst-order condition

1X
¿=¡1

±¿
·
@¼t+¿;t
@it

(¼t+¿;t ¡ ¼¤) + ¸@xt+¿;t
@it

xt+¿;t

¸
= 0; (A.2)

where the summation from ¿ = ¡1 indicates optimality “in a timeless perspective” discussed

in Woodford [22], Svensson and Woodford [19] and Svensson [18]. Then the impulse responses

for ¿ < 0 should be interpreted as the response to an anticipated future impulse.

Of course, the …rst-order condition (A.2) is hardly an operational “targeting rule” (“targeting

rule” meaning a condition for the target variables). As discussed in Svensson and Woodford

[19] and Svensson [18], for a common forward-looking Phillips curve (where current in‡ation

is predetermined and one-period-ahead in‡ation is determined by a forward-looking Phillips

curve), an equivalent and simpler optimal targeting rule can be formulated as

¼t+1+¿;t ¡ ¼¤ = ¡ ¸
·
(xt+1+¿;t ¡ xt+¿;t);

for ¿ ¸ 0, where, for ¿ = 0, xt;t denotes xt;t¡1, the one-period-ahead output-gap forecast in

period t¡ 1, and · is the slope of the short-run Phillips curve.
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