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1 The model

Let the dynamic equations of the model be Xt+1

Hxt+1|t

 = A

 Xt

xt

+Bit +

 C

0

 εt+1 (1.1)

for t ≥ 0, where Xt is an nX -vector of predetermined variables (one element of Xt can be unity,

in order to handle constants), X0 is given, xt is an nx-vector of forward-looking variables, it is

an ni-vector of instruments (control variables), and εt is an nε-vector of exogenous zero-mean iid

shocks. The matrices A, B, C, and H are of dimension (nX + nx) × (nX + nx), (nX + nx) × ni,

nX × nε, and nx × nx, respectively. Without loss of generality, I can normalize the shocks so the

covariance matrix of εt is I. Then the covariance matrix of the shocks to Xt+1 is CC ′. For any

vector zt, zt+1|t denotes the rational expectation Etzt+1. A common special case is when the matrix

H ≡ I, but in general H need not be invertible. Some rows of H may be zero.

A variable is a predetermined variable if and only if it has exogenous one-period-ahead forecast

errors (cf. Klein (2000)).1 The one-period-ahead forecast errors of Xt, Xt+1 − EtXt+1 = Cεt+1,

which by assumption is exogenous. Thus, a predetermined variable is determined by lagged variables

and contemporaneous exogenous shocks. Predetermined variables that only depend on lagged values

of themselves and contemporaneous exogenous shocks are exogenous variables. A variable that is

not a predetermined variable is a non-predetermined variable. The non-predetermined variables are

the forward-looking variables xt and the instruments it. Non-predetermined variables have forecast

errors, xt+1−Etxt+1 and it+1−Etit+1, which are endogenous, that is, endogenous functions of the

exogenous shocks.

The two blocks of (1.1) can be written

Xt+1 = A11Xt +A12xt +B1it + Cεt+1 (1.2)

Hxt+1|t = A21Xt +A22xt +B2it, (1.3)

where A and B are partitioned conformably with Xt and xt,

A ≡

 A11 A12

A21 A22

 , B ≡

 B1

B2

 .
1 This definition of predetermined variables is slightly more general than that of Blanchard and Kahn (1980).

They define predetermined variables as having zero one-period-ahead forecast errors.
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The upper block, (1.2), determines Xt+1 given Xt, xt, it, and εt+1. I assume that A22 is invertible,

so the second block, (1.3), can be written

xt = A−1
22 (Hxt+1|t −A21Xt −B2it).

The lower block determines xt given xt+1|t, Xt, and it.

Assuming that the shocks εt only enter the upper block in (1.1) is not restrictive. If some

shocks enter the lower block, the model can be modified by defining additional predetermined

variables for these shocks and entering those into the upper block, leaving no shocks but additional

predetermined variables in the lower block.

Let

Yt = D


Xt

xt

it

 (1.4)

be an nY -vector of target variables, measured as the deviation from a fixed nY -vector of target

levels, Y ∗, where D is a matrix of dimension nY × (nX + nx + ni). Let the period loss function be

Lt =
1

2
Y ′t ΛYt ≡

1

2


Xt

xt

it


′

W


Xt

xt

it

 , (1.5)

where Λ and W ≡ D′ΛD are given symmetric positive semidefinite matrices, where the elements

of Λ are the weights on the target variables in the period loss function. Let the intertemporal loss

function in period 0 be

E0

∞∑
t=0

(1− δ)δtLt, (1.6)

where 0 < δ < 1 is a discount factor.

2 Optimal policy under commitment: The commitment equilib-

rium

Consider minimizing the intertemporal loss function, (1.6), under commitment once-and-for-all in

period t = 0, subject to (1.1) for t ≥ 0 and X0 = X̄0, where X̄0 is given. Variants of this problem

are solved in Backus and Driffill (1986), Currie and Levine (1993), Sims (1999), Sims (2002b) and

Sims (2000), and Söderlind (1999). The problem can be solved in several ways.
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2.1 Set up the Lagrangian, derive the first-order conditions, and solve a differ-

ence equation

The standard method is to set up the Lagrangian, derive the first-order conditions, combine these

with dynamic equations, and solve the resulting difference equation.

The model (1.1) can be written

H̄


Xt+1

xt+1|t

it+1|t

 = Ā


Xt

xt

it

+

 C

0

 εt+1, (2.1)

where the matrices Ā and H̄ are of dimension (nX + nx)× (nX + nx + ni) and given by

Ā ≡
[
A B

]
, H̄ ≡

 I 0 0

0 H 0

 . (2.2)

Set up the Lagrangian,

L0 = E0

∞∑
t=0

(1− δ)δt

Lt +
[
ξ′t+1 Ξ′t

]H̄

Xt+1

xt+1|t

it+1|t

− Ā

Xt

xt

it

−
 C

0

 εt+1




+
1− δ
δ

ξ′0(X0 − X̄0)

= E0

∞∑
t=0

(1− δ)δt

Lt +
[
ξ′t+1 Ξ′t

]H̄

Xt+1

xt+1

it+1

− Ā

Xt

xt

it

−
 C

0

 εt+1




+
1− δ
δ

ξ′0(X0 − X̄0),

where ξt+1 and Ξt are vectors of nX and nx Lagrange multipliers of the upper and lower block,

respectively, of the model equations. The law of iterated expectations has been used in the second

equality. Note that Ξt is dated to emphasize that it depends on information available in period t,

since the lower block is an equation that determines xt given information available in period t.

The first-order conditions with respect to Xt, xt, and it for t ≥ 1 can be written[
X ′t x′t i′t

]
W +

[
ξ′t Ξ′t−1

] 1

δ
H̄ −

[
ξ′t+1|t Ξ′t

]
Ā = 0. (2.3)

The first-order condition with respect to Xt, xt, and it for t = 0 can be written[
X ′t x′t i′t

]
W +

[
ξ′t 0

] 1

δ
H̄ −

[
ξ′t+1|t Ξ′t

]
Ā = 0, (2.4)
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where X0 = X̄0. In comparison with (2.3), a vector of zeros enters in place of Ξ−1, since there is

no constraint corresponding to the lower block of (2.1) for t = −1. By including a fictitious vector

of Lagrange multipliers, Ξ−1, equal to zero,

Ξ−1 = 0, (2.5)

in (2.4), the first-order conditions can be written more compactly as (2.3) for all t ≥ 0 and (2.5).

The system of difference equations (2.3) has nX + nx + ni equations. The first nX equations

can be associated with the Lagrange multipliers ξt. The expression − 1−δ
δ ξt can be interpreted

as the total marginal losses in period t of the predetermined variables Xt (for t = 0, with given

X0, the equations determine ξ0). They are forward-looking variables: the Lagrange multipliers of

the equations for the predetermined variables always are forward-looking, whereas the Lagrange

multipliers of the equations for the forward-looking variables always are predetermined. The middle

nx equations can be associated with the Lagrange multipliers Ξt. The expression (1− δ)Ξ′tA22 can

be interpreted as the total marginal losses in period t of the forward-looking variables, xt. I can

also interpret (1−δ)Ξ′tH as the total marginal loss in period t of the one-period-ahead expectations

of the forward-looking variables, xt+1|t. The last ni equations are the first-order equations for the

vector of instruments. In the special case when the lower right ni × ni submatrix Wii of W is of

full rank, the instruments can be solved in terms of the other variables and eliminated from (2.3),

leaving the first nX + nx equations involving the Lagrange multipliers and the predetermined and

forward-looking variables only.

Rewrite the nX + nx + ni first-order conditions as

Ā′

 ξt+1|t

Ξt

 = W


Xt

xt

it

+
1

δ
H̄ ′

 ξt

Ξt−1

 . (2.6)

They can be combined with the model equations (2.1) to get a system of 2(nX +nx) +ni difference

equations for t ≥ 0,

 H̄ 0

0 Ā′




Xt+1

xt+1|t

it+1|t

ξt+1|t

Ξt


=

 Ā 0

W 1
δ H̄
′




Xt

xt

it

ξt

Ξt−1


+


C

0

0

0

 εt+1. (2.7)
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Here, Xt and Ξt−1 are predetermined variables (nX + nx in total), and xt, it, and ξt are non-

predetermined variables (nx + ni + nX in total).

In order to apply the algorithm in appendix A, it is practical to put the nX̃ ≡ nX + nx prede-

termined and nx̃ ≡ nx + ni + nX nonpredetermined variables together as X̃t and x̃t, respectively,

where

X̃t ≡

 Xt

Ξt−1

 , x̃t ≡


xt

it

ξt

 . (2.8)

Then the system can be written as

H̃

 X̃t+1

x̃t+1|t

 = Ã

 X̃t

x̃t

+

 C̃

0

 εt+1, (2.9)

where

H̃ ≡



I 0 0 0 0

0 A′22 0 0 A′12

0 0 H 0 0

0 A′21 0 0 A′11

0 B′2 0 0 B′1


, Ã ≡



A11 0 A12 B1 0

WxX H ′/δ Wxx Wxi 0

A21 0 A22 B2 0

WXX 0 WXx WXi I/δ

WiX 0 Wix Wii 0


, C̃ =

 C

0

 .

Partition H̃ and Ã conformably with X̃t and x̃,

H̃ ≡

 H̃11 H̃12

H̃21 H̃22

 , Ã ≡

 Ã11 Ã12

Ã21 Ã22

 ,
so

H̃11 ≡

 I 0

0 A′22

 , Ã22 ≡


A22 B2 0

WXx WXi I/δ

Wix Wii 0


Note that H̃11 is invertible, since A22 is invertible. Then the top nX̃ equations determine X̃t+1,

given X̃t, x̃t, and εt+1. The bottom nx̃ equations determine x̃t for given X̃t and x̃t+1|t. For this,

Ã22 must be invertible.

Under suitable assumptions (see appendix A and Klein (2000), Sims (2002b), and Söderlind

(1999)) this system has a unique solution for t ≥ 0, given X0 and Ξ−1 = 0. The solution uses the

generalized Schur decomposition. Klein (2000) provides a detailed discussion of how this solution

method relates to those of Blanchard and Kahn (1980), Binder and Pesaran (1994) and Binder and
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Pesaran (1997), King and Watson (1998) and King and Watson (2002), Sims (2002b), and Uhlig

(1995).

The solution assumes the saddlepoint property emphasized by Blanchard and Kahn (1980): The

number of generalized eigenvalues of the matrices (H̃, Ã) with modulus larger than unity equals

the number of non-predetermined variables, nx + ni + nX .2 Then the solution can be written

xt = FxX̃t (2.10)

it = FiX̃t, (2.11)

X̃t+1 = MX̃t + C̃εt+1, (2.12)

and where the matrices Fx, Fi, and M depend on A, B, H, D, Λ, and δ, but are independent of

C. This demonstrates the certainty equivalence of the commitment solution: it is independent of

the covariance matrix of the shocks to Xt, CC
′, and the same as when that covariance matrix is

zero. There is also a solution for the forward-looking Lagrange multiplier ξt,

ξt = FξX̃t,

but this solution is not needed here. The matrix Fi can be called the optimal policy function or

the optimal reaction function.

The submatrices of the matrix M , Fx, and Fi,

M ≡

 MXX MXΞ

MΞX MΞΞ

 , Fx ≡
[
FxX FxΞ

]
, Fi ≡

[
FiX FiΞ

]
,

are related according to

MXX ≡ A11 +A12FxX +B1FiX ,

MXΞ ≡ A12FxΞ +B1FiΞ.

Note that, as is the case for non-predetermined variables, the one-period-ahead forecast errors

of it and xt are endogenous,

xt+1 − Etxt+1 = FxC̃εt+1,

it+1 − Etit+1 = FiC̃εt+1,

since Fx and Fi are endogenous.

2 The generalized eigenvalues of the matrices (H̃, Ã) are the complex numbers λ that satisfy det(λH̃ − Ã) = 0
(see appendix A).
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In a commitment equilibrium,

Yt = D


I 0

Fx

Fi

 X̃t ≡ D̃X̃t,

Lt =
1

2
Yt
′ΛYt ≡

1

2
X̃ ′tW̄ X̃t,

where D̃ is an nY × (nX + nx) matrix and W̄ ≡ D̃′ΛD̃ is an (nX + nx)× (nX + nx) matrix.

The equilibrium loss in any period t ≥ 0 satisfies

Et

∞∑
τ=0

(1− δ)δτLt+τ =
1

2
[(1− δ)X̃ ′tV X̃t + δw], (2.13)

where V is an (nX + nx) × (nX + nx) matrix and w a scalar. The equilibrium loss satisfies the

Bellman equation,

(1− δ)X̃ ′tV X̃t + δw = (1− δ)X̃ ′tW̄ X̃t + δEt[(1− δ)X̃ ′t+1V X̃t+1 + δw].

From this and (2.12) follows that V satisfies the Lyapunov equation,

V = W̄ + δM ′VM, (2.14)

and w satisfies

w = tr
{
V C̃C̃ ′

}
. (2.15)

Furthermore, from (2.13) and (2.15) it follows that

lim
δ→1

Et

∞∑
τ=0

(1− δ)δτLt+τ =
1

2
w =

1

2
tr
{
V C̃C̃ ′

}
.

2.2 Commitment in a timeless perspective

Suppose the commitment is not made in period 0 but far into the past, or alternatively, that any

commitment in any period t is restricted as if it had been made far into the past. This kind of

commitment has been called a “commitment in a timeless perspective” by Woodford, cf. Svensson

and Woodford Svensson and Woodford (2005). Then the condition (2.5) no longer applies, and the

first-order condition (2.3) and the solution (2.10)-(2.12) holds for all t = ... − 1, 0, 1, ... As noted

by Svensson and Woodford Svensson and Woodford (2005), a simple way of finding the solution

for commitment in a timeless perspective is to add the term 1−δ
δ Ξ′t−1Hxt to the commitment

problem in period t, where Ξt−1 is the Lagrange multiplier of the equations for the forward-looking
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variables from the optimization in period t − 1. Then, the optimization problem in period t has

the intertemporal loss function,

Et

∞∑
τ=0

(1− δ)δτLt+τ +
1− δ
δ

Ξ′t−1Hxt.

When this term is added, optimization under discretion in each period also results in the solution

for commitment in a timeless perspective. This term is also related to the recursive saddlepoint

method of Marcet and Marimon.

2.3 The recursive saddlepoint method of Marcet and Marimon

The problem to minimize (1.6) subject to (1.1) and (1.4)-(1.5) is not recursive, so the practical

dynamic-programming method cannot be used directly. The reason the problem is not recursive is

that the forward-looking variables, xt, depend on expected future forward-looking variables, (1.3).

The recursive saddlepoint method of Marcet and Marimon (1998, 2019) provides a simple way to

reformulate the problem as a dual recursive saddlepoint problem, so dynamic programming can

be applied. The dual problem is then, except for being a saddlepoint problem, isomorphic to

the standard backward-looking linear-quadratic problem—the stochastic optimal linear-quadratic

regulator (LQR) problem (Ljungqvist and Sargent (2004))—and the standard solution to the LQR

problem can be applied.

Rewrite the Lagrangian as

L0 = E0

∞∑
t=0

(1− δ)δt
 Lt + Ξ′t(Hxt+1 −A21Xt −A22xt −B2it)

+ ξ′t+1(Xt+1 −A11Xt −A12xt −B1it − Cεt+1)


+

1− δ
δ

ξ′0(X0 − X̄0).

The reason why the problem is not recursive is that the term Hxt+1, which is dated t+ 1, appears

in the upper row of the Lagrangian. However, note that, because of (2.5), the discounted sum of

the upper term in the Lagrangian can be written

∞∑
t=0

(1− δ)δt[Lt + Ξ′t(Hxt+1 −A21Xt −A22xt −B2it)] =

∞∑
t=0

(1− δ)δt[Lt + Ξ′t(−A21Xt −A22xt −B2it) +
1

δ
Ξ′t−1Hxt]. (2.16)

Now all the terms within the bracket on the right side are dated t or earlier. The recursive

saddlepoint method is in this case to let this term define the dual period loss. More precisely, the
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dual period loss is defined as

L̃t ≡ Lt + γ′t(−A21Xt −A22xt −B2it) +
1

δ
Ξ′t−1Hxt (2.17)

≡ Lt + L1
t

≡ L̃(Xt,Ξt−1;xt, it, γt),

where Ξt−1 is a new predetermined variable in period t and γt is introduced as a new control, where

Ξt−1 and γt are related by the dynamic equation,

Ξt = γt. (2.18)

The problem can then be reformulated as the recursive dual saddlepoint problem,

max
{γt}t≥0

min
{xt,it}t≥0

E0

∞∑
t=0

(1− δ)δtL̃t, (2.19)

where the optimization is subject to (1.2), (2.18), and to X0 and Ξ−1 = 0 given. The value function

for the saddlepoint problem, starting in any period t, satisfies the Bellman equation

Ṽ (Xt,Ξt−1) ≡ max
γt

min
(xt,it)

{(1− δ)L̃(Xt,Ξt−1;xt, it, γt) + δEtṼ (Xt+1,Ξt)},

subject to (1.2) and (2.18).

Define

ı̃t =


xt

it

γt

 ,
and define W̃ , Ã, B̃, and C̃ such that

L̃t =
1

2

 X̃t

ı̃t

′ W̃
 X̃t

ı̃t

 , (2.20)

X̃t+1 = ÃX̃t + B̃ı̃t + C̃εt+1, (2.21)

where X̃t is defined as in (2.8). Then, Ã, B̃, and C̃ satisfy

Ã ≡

 A11 0

0 0

 , B̃ ≡

 A12 B1 0

0 0 I

 , C̃ ≡

 C

0


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and W̃ satisfies

W̃ =



WXX 0 WXx WXi −A′21

0 0 1
δH 0 0

W ′Xx
1
δH
′ Wxx Wxi −A′22

W ′Xi 0 W ′xi Wii −B′2
−A21 0 −A22 −B2 0


,

where W is partitioned conformably with Xt, xt, and it according to

W ≡


WXX WXx WXi

W ′Xx Wxx Wxi

W ′Xi W ′xi Wii

 .
The problem (2.19) subject to (2.21) and given X̃t is obviously isomorphic to the stochastic LQR

problem (Anderson et al. (1995), Ljungqvist and Sargent (2004)), except being a saddlepoint prob-

lem. However, the saddlepoint aspect does not affect the first-order conditions. It is easy to show

that the first-order conditions of the saddlepoint problem are identical to those of the original

problem.

Hence, I can use the standard solution for the LQR problem: The value function for the

saddlepoint problem will be quadratic,

Ṽ (X̃t) ≡
1

2
[(1− δ)X̃ ′tṼ X̃t + δw̃],

and so the Bellman equation can be written,

(1− δ)X̃ ′tṼ X̃t + δw̃ = (1− δ) max
γt

min
(xt,it)

{

 X̃t

ı̃t

′ W̃
 X̃t

ı̃t

+ δ(EtX̃
′
t+1Ṽ X̃t+1 +

δ

1− δ
w̃)} (2.22)

subject to (2.21).

The first-order condition with respect to ı̃t is

Jı̃t +KX̃t = 0,

where the matrices J and K are defined as

J ≡ R+ δB̃′Ṽ B̃,

K ≡ N ′ + δB̃′Ṽ Ã,

where

W̃ ≡

 Q N

N ′ R

 ,
11



is partitioned conformably with X̃t and ı̃t, so

Q ≡

 WXX 0

0 0

 , N ≡

 WXx WXi −A′21

1
δH 0 0

 , R ≡


Wxx Wxi −A′22

W ′xi Wii −B′2
−A22 −B2 0

 .
It follows that the solution for ı̃t can be written

ı̃t = FX̃t, (2.23)

where

F ≡ − J−1K. (2.24)

Using (2.23) and (2.24) in (2.22) results in the Riccati equation,

Ṽ = Q+ δÃ′Ṽ Ã−K ′J−1K.

Thus, the solution F can be found by first solving the Riccati equation for Ṽ and then using (2.24).

The matrix F provides the solution not only to the saddlepoint problem but also to the original

problem. The equilibrium dynamics will then be given by

X̃t+1 = MX̃t + C̃εt+1,

xt = FxX̃t, (2.25)

it = FiX̃t,

Lt =
1

2
X̃ ′tW̄ X̃t,

where

M ≡ Ã+ B̃F,

the matrix F is partitioned conformably with xt, it, and γt,

F ≡


Fx

Fi

Fγ

 ,
and

W̄ ≡


I 0

Fx

Fi


′

W


I 0

Fx

Fi

 .
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Whereas the solution to the saddlepoint problem in the form of the matrix F also is the solution

to the original problem, the value function of the saddlepoint problem in the form of the matrix

Ṽ and the scalar w̃ does not directly provide the value function of the original problem. This is

because the period loss for the saddlepoint problem, L̃t, differs from the period loss for the original

problem, Lt. Indeed, the matrix Ṽ is not positive semidefinite.

In order to find the value function for original problem, I decompose the value function of the

saddlepoint problem according to

1

2
[(1− δ)X̃ ′tṼ X̃t + δw̃)] ≡ 1

2
[(1− δ)X̃ ′tV X̃t + δw] +

1

2
[(1− δ)X̃ ′tV 1X̃t + δw1],

where

1

2
[(1− δ)X̃ ′tV X̃t + δw] ≡ Et

∞∑
τ=0

(1− δ)δτ 1

2
X̃ ′t+τW̄ X̃t+τ = Et

∞∑
τ=0

(1− δ)δτLt+τ ,

is the value function for the original problem starting in period t with X̃t given. The value function

for the original problem will satisfy the Bellman equation,

1

2
[(1− δ)X̃ ′tV X̃t + δw] ≡ 1

2
(1− δ)X̃ ′tW̄ X̃t +

1

2
δEt[(1− δ)X̃ ′t+1V X̃t+1 + δw],

and the matrix V will satisfy the Lyapunov equation,

V = W̄ + δM ′VM,

and be positive semidefinite. The scalar w will satisfy

w = tr(V C̃C̃ ′).

However, the matrix V and the scalar w can be found in a more direct way from the matrix Ṽ

and scalar w̃. Note that, by (1.3), (2.17), and (2.18), the identity

1

2
[(1− δ)X̃ ′tV X̃t + δw] ≡ 1

2
[(1− δ)X̃ ′tṼ X̃t + δw̃]− (1− δ)1

δ
Ξ′t−1HFxX̃t

must hold. That is,

1

2
[(1− δ)X̃ ′tV 1X̃t + δw1] ≡ − (1− δ)1

δ
Ξ′t−1HFxX̃t ≡ −

1

2
(1− δ)1

δ
(Ξ′t−1HFxX̃t + X̃ ′tF

′
xH
′Ξt−1).

Hence, identification of terms implies w1 ≡ 0, so w and V are determined by

w = w̃,

13



V = Ṽ −

 0 1
δF
′
xXH

′

1
δHFxX

1
δ (HFxΞ + F ′xΞH

′)

 ≡
 ṼXX ṼXΞ − 1

δF
′
xXH

′

ṼΞX − 1
δHFxX ṼΞΞ − 1

δ (HFxΞ + F ′xΞH
′)

 ,
where Ṽ and Fx are partitioned conformably with Xt and Ξt−1 as

Ṽ ≡

 ṼXX ṼXΞ

ṼΞX ṼΞΞ

 , Fx ≡
[
FxX FxΞ

]
.

In summary, the original problem is reformulated by incorporating the block of equations for

the forward-looking variables, (1.3), in such a way that the resulting saddlepoint problem becomes

recursive and isomorphic to the LQR problem. Then the solution to the LQR problem is applied to

the original problem, the dynamics of the original problem is specified, and the Lyapunov function

for the value function of the original problem is specified and solved (alternatively, the above

identification procedure is used to find the value function of the original problem from the value

function of the saddlepoint problem).

Appendix B shows that the recursive saddlepoint method can also be applied to problems that

are not linear-quadratic.

From (2.16) and (1.3), it follows that

Et

∞∑
τ=0

(1− δ)δτ L̃t+τ = Et

∞∑
τ=0

(1− δ)δτLt+τ +
1− δ
δ

Ξ′t−1Hxt, (2.26)

the intertemporal loss function for the dual problem equals the intertemporal loss for the original

problem plus the second term on the right side of (2.26),

1− δ
δ

Ξ′t−1Hxt. (2.27)

It follows that minimizing the right side of (2.26) under discretion will result in the optimal policy

under commitment in a timeless perspective. In Svensson and Woodford (2005), a “commitment

to continuity and predictability” is interpreted as a central bank optimizing under discretion but

taking into account previous expectations and plans in the form of adding (2.27) to its intertemporal

loss function. That is, such a commitment means that the central bank applies the appropriate

shadow price vector 1−δ
δ Ξ′t−1 from the previous period’s optimization to the linear combination Hxt

of the current period’s forward-looking variables. Such a commitment to a modified loss function

then implies that optimization under discretion results in the optimal policy under commitment in

a timeless perspective.
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2.3.1 Using the recursive saddlepoint method to solve linear difference equations

with forward-looking variables

Note that the recursive saddlepoint method can be used to solve linear difference equations with

forward-looking variables. Consider the system

Xt+1 = A11Xt +A12xt + Cεt+1, (2.28)

EtHxt+1 = A21Xt +A22xt, (2.29)

and assume that it has a unique solution

xt = FxXt. (2.30)

This solution can be found with the generalized Schur decomposition, as in Klein (2000) and

demonstrated above.

The solution can also be found with the recursive saddlepoint problem. Let

L(Xt, xt) ≡
1

2

 Xt

xt

′W
 Xt

xt

 ,
where W is any positive semidefinite matrix, and let

L̃(X̃t; ı̃t) ≡ L(Xt, xt) + γ′t(−A21Xt −A22xt) +
1

δ
Ξ′t−1Hxt ≡

1

2

 X̃t

ı̃t

′ W̃
 X̃t

ı̃t

 ,
X̃t+1 = ÃX̃t + B̃ı̃t + C̃εt,

where

X̃t ≡

 Xt

Ξt−1

 , ı̃t ≡

 xt

γt

 ,

W̃ =


WXX 0 WXx −A′21

0 0 1
δH 0

W ′Xx
1
δH
′ Wxx −A′22

−A21 0 −A22 0

 ,

where W is partitioned conformably with Xt and xt according to

W ≡

 WXX WXx

W ′Xx Wxx

 .
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Then we can apply the recursive saddlepoint method as above. This will result in the solution

ı̃t ≡

 xt

γt

 = F̃ X̃t ≡

 F̃xX F̃xΞ

F̃γX F̃γΞ

 Xt

Ξt−1

 ,
where

F̃xX ≡ Fx, F̃xΞ ≡ 0. (2.31)

Here (2.31) should be demonstrated in detail, but we realize that it must be true when there is a

unique (nonbubble) solution (2.30).

Note that, since there are no degrees of freedom for xt, the solution (2.31) for xt does not

depend on the matrix W . The solution for γt will depend on W .

3 Targeting rules and instrument rules

Practical definitions of instrument and targeting rules are developed in Svensson (1999), Rudebusch

and Svensson (1999), Svensson and Woodford (2005), and Svensson (2003). A general derivation

of a targeting rule in a linear-quadratic model is provided by Giannoni and Woodford (2003).

An explicit instrument rule expresses the instrument as function of current and lagged prede-

termined variables only. In the solution above, (2.11) is the optimal explicit instrument rule, also

called the optimal policy function or the optimal reaction function. It can be written in three main

ways: First, as in (2.11), it can be written as a function of Xt, the predetermined variables, and

Ξt−1, the predetermined Lagrange multipliers of the lower block of (1.1), the block of equations

determining the forward-looking variables. Second, since Ξt−1 (in the timeless perspective) can be

written as an infinite sum of lagged predetermined variables

Ξt−1 =

∞∑
τ=0

MΞΞ
τMΞXXt−1−τ ,

it follows that the explicit instrument rule can also be written as an infinite sum of lagged prede-

termined variables,

it = FiXXt + FiΞ

∞∑
τ=0

MΞΞ
τMΞXXt−1−τ .

Third, since X̃t by (2.12) can be written as an infinite sum of lagged shocks,

X̃t =

∞∑
τ=0

M τ C̃εt−τ ,
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the explicit instrument rule can also be written as such a sum,

it = Fi

∞∑
τ=0

M τ C̃εt−τ .

An implicit instrument rule is an equilibrium condition that involves the instrument and

forward-looking variables; it may or may not also involve predetermined variables. Any implicit

instrument rule consistent with a given equilibrium is not unique. For the solution above, for any

arbitrary ni×nx matrix G, by (2.10), I can construct a nonunique optimal implicit instrument rule

in the following way,

it = FiX̃t = FiX̃t +G(xt − FxX̃t) = (Fi −GFx)X̃t +Gxt.

The different forms of instrument rules may have different determinacy properties, see Svensson

and Woodford (2005).

A targeting rule is an equilibrium condition involving the target variables only, including fore-

casts (expected leads) and lags thereof. The optimal targeting rule is the first-order condition for

an optimum expressed in terms of forecasts, current values, and lags of the target variables only.3

The first-order condition (2.6) can be written

A′

 ξt+1|t

Ξt

 =
1

δ

 I 0

0 H ′

 ξt

Ξt−1

+ [DX Dx]′ΛYt, (3.1)

B′

 ξt+1|t

Ξt

 = D′iΛYt, (3.2)

where the matrix D ≡ [DX Dx Di] is partitioned conformably with Xt, xt, and it.

Consider the nX + nx equations in (3.1) as a system of difference equations for the forward-

looking variables ξt and the predetermined variables Ξt, for given realizations of the target variables

Yt. Under suitable assumptions, there exist a solution to this system of the form

ξt = g1Ξt−1 + g2

∞∑
τ=0

Pτ [DX Dx]′ΛYt+τ |t ≡ g1Ξt−1 + g2EtP (L−1)[DX Dx]′ΛYt, (3.3)

Ξt = m1Ξt−1 +m2

∞∑
τ=0

Pτ [DX Dx]′ΛYt+τ |t ≡ m1Ξt−1 +m2EtP (L−1)[DX Dx]′ΛYt, (3.4)

where the matrices g1, g2, m1, m2, and {Pτ}∞τ=0 depend on A, H, and δ, and where P (L−1) ≡∑∞
τ=0 PτL−τ denotes a lead polynomial, with L the lag operator and L−1 the lead operator, so

3 This derivation of the targeting rule follows Giannoni and Woodford (2003), except that they restrict the
submatrix B1 of B in (2.2) to be zero.
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L−τYt ≡ Yt+τ . Express the solution as ξt+1|t

Ξt

 = Ψ

 ξt|t−1

Ξt−1

+ EtQ(L−1)[DX Dx]′ΛYt, (3.5)

where the square matrix Ψ is given by

Ψ ≡

 0 g1m1

0 m1

 , (3.6)

and {Qτ}∞τ=0 in Q(L−1) ≡
∑∞

τ=0QτL−τ depend on g1, g2, m2, and {Pτ}∞τ=0.

Furthermore, for any square matrix Ψ, there exist a matrix polynomial Φ(L) of the same

dimension and a scalar polynomial α(L) such that

Φ(L)(I −ΨL) = α(L)I.

Here, α(L) ≡ det(I−ΨL), and Φ(L) is the adjoint of I−ΨL, that is, the transpose of the matrix of

cofactors of I −ΨL. The order of α(L) is rank(Ψ) ≤ nx. The dimension of Ψ and Φ(L) is nX +nx,

and the order of Φ(L) is min[rank(Ψ), nX + nx − 1].

The solution (3.5) can be written

(I −ΨL)

 ξt+1|t

Ξt

 = EtQ(L−1)[DX Dx]′ΛYt.

Premultiplying this by Φ(L) gives

α(L)

 ξt+1|t

Ξt

 = Φ(L)EtQ(L−1)[DX Dx]′ΛYt.

Since α(L) is a scalar polynomial, premultiplying this expression by B′ and using (3.2) result in

B′Φ(L)EtQ(L−1)[DX Dx]′ΛYt − α(L)D′iΛYt = 0. (3.7)

Thus, this is the general form of the targeting rule, the first-order condition (3.1) and (3.2),

where the Lagrange multipliers have been eliminated. It is a condition in terms of forecasts and

lags of the target variables only. Although it looks complicated in the general form, in any given

model, it is often quite simple, see Svensson (2003).

If Di 6= 0 and D′iΛ 6= 0, the target variables depend directly on the the instruments, or the

instruments are among the target variables, and the second term in (3.7) enters in the targeting

rule. If Di = 0 or D′iΛ = 0, the target variables do not depend directly on the instrument and
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the instruments are not among the target variables. Then the second term in the targeting rule

vanishes, and it is

B′Φ(L)EtQ(L−1)[DX Dx]′ΛYt = 0. (3.8)

As explained in Svensson (2003), the optimal targeting rule (3.7) corresponds to the equality of

the marginal rates of substitution and marginal rates of transformation between the target variables,

MRS = MRT.

The marginal rates of substitution between the target variables follow from the loss function, (1.5)

and (1.6); the marginal rates of transformation follow from the model equations, (1.1) and (1.4).

The optimal targeting rule provides ni equations, the same number as the number of instru-

ments, regardless of whether the instruments are among the targeting rules or not. They can be

interpreted as ni equations to be added to the nX + nx model equations, (1.1), so as to determine

the nX + nx predetermined and forward-looking variables and the ni instruments.

Consider a special case, where there is only one instrument (ni = 1), and where

Yt ≡

 Ȳt

it

 =

 D̄X D̄x 0

0 0 1



Xt

xt

it

 =

 D̄XXt + D̄xxt

it

 .
That is, the target variables consist of one set of variables, Ȳt, and the instrument, it, and Ȳt does

not depend directly on the instrument. Call Ȳt the non-instrument target variables. Furthermore,

suppose the weighting matrix is

Λ ≡

 Λ̄ 0

0 λi

 ,
so the period loss function is additively separable in the non-instrument target variables and the

instrument,

Lt =
1

2
(Ȳ ′t Λ̄Ȳt + λii

2
t ).

Then,

[DX Dx]′ΛYt = [D̄X D̄x]′Λ̄Ȳt,

D′iΛYt = λiit.

It follows that (3.7) can be written

α(L)λiit = B′Φ(L)EtQ(L−1)[D̄X D̄x]′Λ̄Ȳt. (3.9)
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This can be seen as an implicit instrument rule, where the instrument in period t is related to

lagged values of the instrument and to forecasts, current values, and lags of the non-instrument

target variables. But (3.9) is fundamentally a targeting rule, in the sense that the instrument enters

there only because it is a target variable. Suppose that λi = 0 (corresponding to D′iΛ = 0), so the

instrument is no longer (effectively) a target variable. Then, the instrument vanishes from (3.9),

and it becomes

B′Φ(L)EtQ(L−1)[D̄X D̄x]′Λ̄Ȳt = 0,

identical to (3.8), and involves only the non-instrument target variables.

3.1 Backward-looking model

Consider a backward-looking model, where (1.1) and (1.4) are simplified to

Xt+1 = AXt +Bit + Cεt+1,

Yt = [DX Di]

 Xt

it

 .
That is, there are no forward-looking variables, so A ≡ A11, B ≡ B1, and D ≡ [DX Di].

For such a model, the first-order conditions (3.1) and (3.2) simplify to

A′ξt+1|t =
1

δ
ξt +DX

′ΛYt, (3.10)

B′ξt+1|t = D′iΛYt. (3.11)

The first-order conditions (3.10) (those with respect to Xt) must fulfill,

ξt = − δDX
′ΛYt + δA′ξt+1|t

= −
T−1∑
τ=0

(δA′)τδD′XΛYt+τ |t + (δA′)T ξt+T |t

= −
∞∑
τ=0

(δA′)τδD′XΛYt+τ |t ≡ g2EtP (L−1)D′XΛYt

where the conditions

lim
T→∞

(δA′)T ξt+T |t = 0,

lim
T→∞

∣∣∣∣∣
T−1∑
τ=0

(δA′)τδD′XΛYt+τ |t

∣∣∣∣∣ < ∞,
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should be fulfilled. It follows that in (3.3) g1 ≡ 0 and that g2P (L−1) can be identified as

g2P (L−1) ≡ −
∞∑
τ=0

(δA′L−1)τδ.

It follows that ξt+1|t must fulfill

ξt+1|t = −
∞∑
τ=0

(δA′)τδD′XΛYt+1+τ |t = −Et

∞∑
τ=0

L−1(δA′L−1)τδD′XΛYt. (3.12)

Hence, Q(L−1) in (3.5) can be identified as

Q(L−1) ≡ −
∞∑
τ=0

L−1(δA′L−1)τδ.

From the first-order conditions (3.11) (those with respect to it), it then follows that

B′ξt+1|t = −B′
∞∑
τ=0

(δA′)τδD′XΛYt+1+τ |t = D′iΛYt.

Hence, the optimal targeting rule (3.7) can, for a backward-looking model, be written

B′
∞∑
τ=0

(δA′)τδD′XΛYt+1+τ |t +D′iΛYt = 0.

4 Optimization under discretion: The discretion equilibrium

Let (1.1) be the model equations. Let the period loss function be written as

Lt =
1

2


Xt

xt

it


′

W


Xt

xt

it

 , (4.1)

and let the intertemporal loss function in period t be

Et

∞∑
τ=0

(1− δ)δτLt+τ ,

where 0 < δ < 1. Consider the decision problem to choose it in period t to minimize the intertem-

poral loss function under discretion, that is, subject to (1.1), Xt given, and

it+1 = Ft+1Xt+1 (4.2)

xt+1 = Gt+1Xt+1, (4.3)

where Ft+1 and Gt+1 are determined by the decision problem in period t+ 1. Both Ft+1 and Gt+1

are assumed known in period t; only Gt+1 will matter for the decision problem in period t.
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Oudiz and Sachs (1985) derive an algorithm for the solution of this problem (with H = I),

which is further discussed in Backus and Driffill (1986), Currie and Levine (1993), and Söderlind

(1999).

First, take the expectation in period t of (1.1), Xt+1|t

Hxt+1|t

 = A

 Xt

xt

+Bit. (4.4)

Second, using (4.3) and the upper block of (4.4) results in

xt+1|t = Gt+1Xt+1|t = Gt+1(A11Xt +A12xt +B1it). (4.5)

The lower block of (1.1) is

Hxt+1|t = A21Xt +A22xt +B2it. (4.6)

Multiplying (4.5) by H, setting the result equal to (4.6), and solving for xt gives

xt = ĀtXt + B̄tit, (4.7)

where

Āt ≡ (A22 −HGt+1A12)−1(HGt+1A11 −A21), (4.8)

B̄t ≡ (A22 −HGt+1A12)−1(HGt+1B1 −B2) (4.9)

(I assume that A22 −HGt+1A12 is invertible). Using (4.7) in the upper block of (1.1) then gives

Xt+1 = ÃtXt + B̃tit + Cεt+1, (4.10)

where

Ãt ≡ A11 +A12Āt, (4.11)

B̃t ≡ B1 +A12B̄t. (4.12)

Third, using (4.7) in (4.1) leads to

Lt =
1

2

 Xt

it

′  Qt Nt

N ′t Rt

 Xt

it

 , (4.13)

where

Qt ≡ WXX +WXxĀt + Ā′tW
′
Xx + Ā′tWxxĀt, (4.14)

Nt ≡ WXxB̄t + Ā′tWxxB̄t +WXi + Ā′tWxi, (4.15)

Rt ≡ Wii + B̄′tWxxB̄t + B̄′tWxi +W ′xiB̄t. (4.16)
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Fourth, since the loss function is quadratic and the constraints are linear, it follows that the

optimal value of the problem will be quadratic. In period t + 1 the optimal value will depend on

Xt+1 and can hence be written 1
2 [(1−δ)X ′t+1Vt+1Xt+1+δwt+1], where Vt+1 is a positive semidefinite

matrix and wt+1 is a scalar independent of Xt+1. Both Vt+1 and wt+1 are assumed known in period

t. Then the optimal value of the problem in period t is associated with the positive semidefinite

matrix Vt and the scalar wt, and satisfies the Bellman equation

1

2
[(1− δ)X ′tVtXt + δwt] ≡ (1− δ) min

it

{
Lt + δEt

1

2
[X ′t+1Vt+1Xt+1 +

δ

1− δ
wt+1]

}
, (4.17)

subject to (4.10) and (4.13). Indeed, the problem has been transformed to a standard LQR problem

without forward-looking variables, albeit in terms of Xt and with time-varying parameters. The

first-order condition is, by (4.13) and (4.17),

0 = X ′tNt + i′tRt + δEt[X
′
t+1Vt+1B̃t]

= X ′tNt + i′tRt + δ(X ′tÃ
′
t + i′tB̃

′
t)Vt+1B̃t.

The first-order condition can be solved for the reaction function

it = FtXt, (4.18)

where

Ft ≡ − (Rt + δB̃′tVt+1B̃t)
−1(N ′t + δB̃′tVt+1Ãt) (4.19)

(I assume that Rt + δB̃′tVt+1B̃t is invertible). Using (4.18) in (4.7) gives

xt = GtXt,

where

Gt ≡ Āt + B̄tFt. (4.20)

Furthermore, using (4.18) in (4.17) and identifying terms result in

Vt ≡ Qt +NtFt + F ′tN
′
t + F ′tRtFt + δ(Ãt + B̃tFt)

′Vt+1(Ãt + B̃tFt). (4.21)

Finally, the above equations ((4.8), (4.9), (4.11), (4.12), (4.14)–(4.16), (4.19), (4.20), and (4.21))

define a mapping from (Gt+1, Vt+1) to (Gt, Vt), which also determines Ft. The solution to the

problem is a fixed point (G,V ) of the mapping and a corresponding F . It can be obtained as the

limit of (Gt, Vt) when t → −∞. The solution thus satisfies the corresponding steady-state matrix

equations.
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Thus, the instrument it and the forward-looking variables xt will be linear functions,

it = FXt, (4.22)

xt = GXt, (4.23)

where the corresponding F and G satisfy the corresponding steady-state equations. The matrix F

can be called the equilibrium policy function or the equilibrium reaction function. The resulting

equation for Xt is

Xt+1 = MXt + Cεt+1, (4.24)

where

M ≡ Ã+ B̃F

where Ã and B̃ is the fixed point of the mapping from (Ãt+1, B̃t+1) to (Ãt, B̃t).

It also follows that F , G, Ã, and B̃ depend on A, B, H, W , and δ, but are independent of C.

This demonstrates the certainty equivalence of the discretionary equilibrium.

In a discretion equilibrium,

Yt = D


I

G

F

Xt ≡ D̃Xt,

Lt =
1

2
Y ′t ΛYt ≡

1

2
X ′tW̄Xt,

where D̃ is an nY × nX matrix and W̄ ≡ 1
2D̃
′ΛD̃ is an nX × nX matrix.

The equilibrium loss in any period t ≥ 0 will satisfy

Et

∞∑
τ=0

(1− δ)δτLt+τ =
1

2
[(1− δ)X ′tV Xt + δw],

where the nX × nX matrix V and the scalar w, the fixed point of the mapping from (Vt+1, wt+1)

to (Vt, wt), satisfy

V = W̄ + δM ′VM,

w = tr[V CC ′].

The equilibrium loss obviously depends on C.

One might think that the discretion solution can also be found by combining (2.1) with the

first-order condition (2.4) for t ≥ 0. This solution is generally not correct. It amounts to treat-

ing expectations xt+1|t as exogenous. This is consistent with (4.3) only in the special case of all
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predetermined variables in the vector Xt being exogenous, in which case xt+1|t = GXt+1|t is inde-

pendent of it. However, if some predetermined variables are endogenous, Xt+1|t and thereby xt+1|t

will depend on it, which is taken into account in the Bellman equation derived above. The reason

why the first-order conditions (2.4) for t ≥ 0 give the correct discretion solution in the model of

Svensson and Woodford (2005) is that all predetermined variables are exogenous there.4

5 Targeting rules and instrument rules under discretion

The equilibrium explicit instrument rule under discretion is (4.22). (Since the discretion equilibrium

is not optimal, it is better to refer to the instrument rule as the equilibrium one than the optimal

one.) It can also be written with the instrument as a function of current and past shocks,

it = F
∞∑
τ=0

M τCεt−τ .

Any equilibrium implicit instrument rule can written, for an arbitrary ni × nx matrix K, as

it = FXt = FXt +K(xt −GXt) = (F −KG)Xt +Kxt.

In order to find the equilibrium targeting rule under discretion, note that, in a discretion equilib-

rium, I should use the “equilibrium” model in period t, which takes the future discretion equilibrium

into account in the form that xt+τ = GXt+τ for τ ≥ 1. This equilibrium model can be written as

Xt+1 = ÃXt + B̃it + Cεt+1, (5.1)

xt = A−1
22 (HGÃ−A21)Xt +A−1

22 (HGB̃ −B2)it. (5.2)

Here, (5.2) follows from the lower block of (1.1), Hxt+1|t = HGXt+1|t, and (5.1).

From (5.2) and (1.4) it follows that the target variables satisfy

Yt = DXXt +Dxxt +Diit

= [DX +DxA
−1
22 (HGÃ−A21)]Xt + [DxA

−1
22 (HGB̃ −B2) +Di]it

≡ D̂

 Xt

it

 . (5.3)

Then the period loss function satisfies

Lt =
1

2
Y ′t ΛYt ≡

1

2

[
X ′t i′t

]
Ŵ

 Xt

it

 , (5.4)

4 I thank Andrew Levin, Eric Swanson and Joseph Pearlman, who have clarified this point (Joseph Pearlman
indirectly via an email to Robert Tetlow) and allowed me to correct erroneous statements in previous versions of
these notes.
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where Ŵ ≡ D̂ΛD̂. The problem has become a problem without any forward-looking variables.

Construct the Lagrangian,

L0 = E0

∞∑
t=0

(1− δ)δt
{
Lt + ξ′t+1

(
Xt+1 − ÃXt − B̃it − Cεt+1

)}
+

1− δ
δ

ξ′0(X0 − X̄0)

= E0

∞∑
t=0

(1− δ)δt
Lt + ξ′t+1

Ĥ
 Xt+1

it+1

− Â
 Xt

it

−
 Cεt+1

0


+

1− δ
δ

ξ′0(X0 − X̄0),

where ξt+1 is a vector of nX Lagrange multipliers of the model equations, and

Ĥ ≡
[
I 0

]
, Â ≡

[
Ã B̃

]
.

The first-order conditions with respect to Xt and it for t ≥ 0, taking (5.4) into account, can be

written [
X ′t i′t

]
Ŵ + ξ′t

1

δ
Ĥ − ξ′t+1|tÂ = 0, (5.5)

where X0 = X̄0. The first-order condition (5.5) can be rewritten as

Ã′ξt+1|t =
1

δ
ξt + D̂′XΛYt (5.6)

B̃′ξt+1|t = D̂′iΛYt, (5.7)

where D̂ ≡ [D̂X D̂i] is partitioned in conformity with Xt and it. A similar argument as above for

the commitment case will result in the equation

B̃′Φ(L)EtQ(L−1)D̂′XΛYt − α(L)D̂′iΛYt = 0,

where Φ(L) and Q(L−1) are nX × nX matrix polynomials and α(L) is a scalar polynomial.

This is the general form of the optimal targeting rule for the discretion case. Again, although

it looks complicated in the general form, in any given model it is often quite simple. Again, the

optimal targeting rule corresponds to the equality of the marginal rates of substitution and marginal

rates of transformation between the target variables,

MRS = MRT.

The marginal rates of substitution between the target variables follow from the loss function, (1.5)

and (1.6). Under discretion, the relevant marginal rates of transformation are the “equilibrium”

ones, which follow from the “equilibrium” model equations (5.1) and (5.3), not the “structural”

model equations (1.1) and (1.4).
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Appendix

A Solving a system of linear difference equations with nonprede-

termined variables

Consider the system

H

 y1,t+1

Ety2,t+1

 = A

 y1t

y2t

+

 C

0

 εt+1 (A.1)

for t ≥ 0, where y1t is an n1-vector of predetermined variables and y10 is given, y2t is an n2-vector of

nonpredetermined variables, εt+1 is an iid random nε-vector with zero mean and covariance matrix

I. The real matrices A and H are n× n, where n ≡ n1 + n2, and the real matrix C is n1× nε. Let

the matrices H and A be partitioned conformably with y1t and y2t so

H ≡

 H11 H12

H21 H22

 , A ≡

 A11 A12

A21 A22

 .
I assume that H11 and A22 are nonsingular. Then the upper block of (A.1) determines y1,t+1 given

y1t, y2t, and εt+1. The lower block determines y2t given y1t and Etyt+1.

Take expectations conditional on information in period t and write the system as

H

 Ety1,t+1

Ety2,t+1

 = A

 y1t

y2t

 (A.2)

Following Klein (2000), Sims (2002b), and Söderlind (1999), use the generalized Schur decomposi-

tion of A and H. This decomposition results in the square possibly complex matrices Q, S, T , and

Z such that

A = Q′TZ ′, (A.3)

H = Q′SZ ′, (A.4)

where Q′ for a complex matrix denotes the complex conjugate transpose of Q (the transpose of

the complex conjugate of Q).5 The matrices Q and Z are unitary (Q′Q = Z ′Z = I), and S

and T are upper triangular (see Golub and van Loan (1989)). Furthermore, the decomposition is

sorted according to ascending modulus of the generalized eigenvalues, so |λj | ≥ |λk| for j ≥ k.6

5 If Q = [qjk] has elements qjk = Reqjk + iImqjk, the complex conjugate of Q is the matrix Q̄ = [q̄jk] with elements
q̄jk = Reqjk − iImqjk.

6 The sorting of the eigenvalues was previously often done by two programs written by Sims and available at
www.princeton.edu/∼sims, Qzdiv and Qzswitch. Now they are done much faster with the Matlab function ordqz.
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(The generalized eigenvalues are the ratios of the diagonal elements of T and S, λj = tjj/sjj

(j = 1, ..., n). A generalized eigenvalue is infinity if tjj 6= 0 and sjj = 0 and zero if tjj = 0 and

sjj 6= 0.)

Assume the saddlepoint property (Blanchard and Kahn (1980)): The number of generalized

eigenvalues with modulus larger than unity (the unstable eigenvalues) equals the number of non-

predetermined variables. Thus, I assume that |λj | > 1 for n1 + 1 ≤ j ≤ n1 + n2 and |λj | < 1 for

1 ≤ j ≤ n1.(for an exogenous predetermined variable with a unit root, I can actually allow |λj | = 1

for some 1 ≤ j ≤ n1).

Define  ỹ1t

ỹ2t

 ≡ Z ′
 y1t

y2t

 . (A.5)

I can interpret ỹ1t as a complex vector of n1 transformed predetermined variables and ỹ2t as a

complex vector of n2 transformed non-predetermined variables. Premultiply the system (A.2) by

Q and use (A.3)-(A.5) to write it as S11 S12

0 S22

 Etỹ1,t+1

Etỹ2,t+1

 =

 T11 T12

0 T22

 ỹ1t

ỹ2t

 , (A.6)

where S and T have been partitioned conformably with ỹ1t and ỹ2t.

Consider the lower block of (A.6),

S22 Etỹ2,t+1 = T22 ỹ2t. (A.7)

Since the diagonal terms of S22 and T22 (sjj and tjj for n1 + 1 ≤ j ≤ n1 + n2) satisfy |tjj/sjj | > 1,

the diagonal terms of T22 are nonzero, the determinant of T22 is nonzero, and T22 is invertible. Note

that S22 may not be invertible. I can then solve for ỹ2t as

ỹ2t = JEtỹ2,t+1 = 0, (A.8)

where the complex matrix J is given by

J ≡ T−1
22 S22. (A.9)

I exploit that the modulus of the diagonal terms of T−1
22 S22 is less than one. I also assume that

Etỹ2,t+τ is sufficiently bounded. Then JτEtỹ2,t+τ → 0 when τ → ∞. Note that J may not be

invertible, since S22 may not be invertible.
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I have, by (A.5),

y1t = Z11ỹ1t, (A.10)

y2t = Z21ỹ1t, (A.11)

where

Z ≡

 Z11 Z12

Z21 Z22

 (A.12)

is partitioned conformably with y1t and y2t. Under the assumption of the saddlepoint property,

Z11 is square. I furthermore assume that Z11 is invertible. Then I can solve for ỹ1t in (A.10),

ỹ1t = Z−1
11 y1t, (A.13)

and use this in (A.11) to get

y2t = Fy1t, (A.14)

where the real n2 × n1 matrix F is given by

F ≡ Z21Z
−1
11 . (A.15)

It remains to find a solution for y1,t+1. By (A.8), the upper block of (A.6) is

S11Etỹ1,t+1 = T11ỹ1t.

Since the diagonal terms of S11 and T11 satisfy |tjj/sjj | < 1, all diagonal terms of S11 must be

nonzero, so the determinant of S11 is nonzero, and S11 is invertible. I can then solve for Etỹ1,t+1 as

Etỹ1,t+1 = S−1
11 T11ỹ1t.

By (A.10),

Ety1,t+1 = Z11Etỹ1,t+1

= Z11S
−1
11 T11ỹ1t

= Z11S
−1
11 T11Z

−1
11 y1t (A.16)

where I have used (A.13).

It follows that I can write the solution as

y1,t+1 = My1t +H−1
11 Cεt+1, (A.17)

where the real matrix M is given by

M ≡ Z11S
−1
11 T11Z

−1
11 (A.18)

Thus, the solution to the system (A.1) is given by (A.14) and (A.17) for t ≥ 0.
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A.1 Relation to Sims (2002b)

Consider the system of equations (A.1) and introduce the vector of endogenous expectational errors

of the nonpredetermined variables,

ηt ≡ y2t − Et−1y2t,

which have the obvious property that Et−1ηt = 0. Using this to substitute for Ety2,t+1 in (A.1),

the latter can be written in the form

Γ0yt = Γ1yt−1 + Ψεt + Πηt, (A.19)

where

yt ≡

 y1t

y2t

 , Γ0 ≡ H, Γ1 ≡ A, Ψ ≡

 C

0

 , Π ≡ H2,

where H ≡ [H1 H2] is partitioned conformably with y1t and y2t. Sims (2002b) uses the generalized

Schur decomposition to find a solution to (A.19) with a more elaborate method than the one used

above in A, explicitly taking into account the condition Et−1ηt = 0 and the somewhat complex

restrictions this implies.

Sims also deals with the case when εt is an arbitrary exogenous stochastic process and not

necessarily a zero-mean iid shocks as above. Then the solution can be expressed as

yt = Θ1yt−1 + Θ0εt + Θy

∞∑
τ=0

Θτ
fΘθEtεt+1+τ ,

where Θ0 and Θ1 are real matrices, Θy, Θf , and Θθ are complex matrices, and ΘyΘ
τ
fΘθ for any

integer τ ≥ 0 is a real matrix.7 Svensson (2005, Appendix) solves (A.1) with the method in

appendix A when εt is an arbitrary exogenous stochastic process and expresses the solutions as

y2t = Fy1t + Zt,

y1,t+1 = My1t +NEtZt+1 + PCEtεt+1 +H−1
11 C(εt+1 − Etεt+1),

Zt ≡
∞∑
τ=0

RτH
−1
11 CEtεt+1+τ ,

where F , M , N , P and {Rτ}∞τ=0 are real matrices of appropriate dimension.

Klein (2000) provides a detailed discussion of how the solution method used in these notes

relates to those of Blanchard and Kahn (1980), Binder and Pesaran (1994) and Binder and Pesaran

(1997), King and Watson (1998) and King and Watson (2002), Sims (2002a), and Uhlig (1995).

7 The solution is calculated by his software Gensys, available at www.princeton.edu/∼sims.
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B The recursive saddlepoint method for a nonlinear problem

Consider the nonlinear problem

min
{it}t≥0

E0

∞∑
t=0

(1− δ)δtLt, (B.1)

where the period loss function is

Lt = L(Xt, xt, it, st), (B.2)

the constraints are

Xt+1 = A1(Xt, xt, it, st+1), (B.3)

EtH(Xt+1, xt+1, st+1) = A2(Xt, xt, it, st), (B.4)

where {st} is an exogenous Markov process, A1(·), A2(·), and H(·) are vector-valued functions of

the same dimension as Xt, xt, and xt, respectively, and where X0 and s0 are given. Equation

(B.3) determines Xt+1 given Xt, xt, it, and st+1. The function A2(Xt, xt, it, st) is assumed to be

invertible with respect to xt, so equation (B.4) determines xt given Xt, it, st, and expectations

EtH(Xt+1, xt+1, st+1).

Write the Lagrangian as

L0 = E0

∞∑
t=0

(1− δ)δt
 Lt + Ξ′t[EtH(Xt+1, xt+1, st+1)−A2(Xt, xt, it, st)]

+ ξ′t+1[Xt+1 −A1(Xt, xt, it, st+1)]


= E0

∞∑
t=0

(1− δ)δt
 Lt + Ξ′t[H(Xt+1, xt+1, st+1)−A2(Xt, xt, it, st)]

+ ξ′t+1[Xt+1 −A1(Xt, xt, it, st+1)]

 , (B.5)

where Ξt is the vector of Lagrange multipliers for (B.4), ξt+1 is the vector of Lagrange multipliers

for (B.4), and the second equality follows from the law of iterated expectations. The problem is

not recursive, since the term H(Xt+1, xt+1, st+1), which depends on the forward-looking variable

xt+1, appears in the first line of of (B.5). However, note that the discounted sum of the first line

of (B.5) can be written

∞∑
t=0

(1− δ)δt{Lt + Ξ′t[H(Xt+1, xt+1, st+1)−A2(Xt, xt, it, st)]} =

∞∑
t=0

(1− δ)δt{Lt − Ξ′tA2(Xt, xt, it, st) +
1

δ
Ξ′t−1H(Xt, xt, st)},

where Ξ−1 = 0. Now all the terms within the curly brackets on the right side are dated t or earlier.

The recursive saddlepoint method is in this case to let this expression within the curly brackets
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define the dual period loss. More precisely, the dual period loss is defined as

L̃t ≡ Lt − γ′tA2(Xt, xt, it, st) +
1

δ
Ξ′t−1H(Xt, xt, st) ≡ L̃(Xt,Ξt−1;xt, it, γt; st),

where Ξt−1 is a predetermined variable in period t and γt is an additional control variable, and

where Ξt−1 and γt are related by the dynamic equation,

Ξt = γt. (B.6)

Marcet and Marimon (1998, 2019) show that the problem can then be reformulated as the

recursive saddlepoint problem,

max
{γt}t≥0

min
{xt,it}t≥0

E0

∞∑
t=0

(1− δ)δtL̃t,

where the optimization is subject to (B.3), (B.6), and X0 and Ξ−1 given. The value function for

the saddlepoint problem, starting in any period t, satisfies the Bellman equation

Ṽ (X̃t; st) ≡ max
γt

min
(xt,it)

{(1− δ)L̃(X̃t; ı̃t; st) + δEtṼ (X̃t+1; st+1)},

subject to (B.3) and (B.6), where X̃t ≡ (X ′t,Ξ
′
t−1)′ and ı̃t ≡ (x′t, i

′
t, γ
′
t)
′. The optimal policy function

for the saddlepoint problem will be

ı̃t = F (X̃t, st) ≡


Fx(X̃t, st)

Fi(X̃t, st)

Fγ(X̃t, st)

 .
It follows that the solution for the original problem is

xt = Fx(X̃t, st),

it = Fi(X̃t, st),

Lt = L[Xt, Fx(X̃t, st), Fi(X̃t, st), st] ≡ L̄(X̃t, st),

X̃t+1 =

 A1[Xt, Fx(X̃t, st), Fi(X̃t, st), st+1]

Fγ(X̃t, st)

 ≡ M(X̃t, st, st+1).

The value function for the original problem satisfies the Bellman equation

V (X̃t; st) ≡ (1− δ)L̄(X̃t, st) + δEtV [M(X̃t, st, st+1), st+1].

This value function is related to the value function of the dual problem by

V (X̃t; st) ≡ Ṽ (X̃t; st)−
1− δ
δ

Ξ′t−1H[Xt, Fx(X̃t, st), st].
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Expressing the constraint as (B.4) is not very restrictive. Suppose, for instance, that the

constraint (B.4) is replaced by a constraint of the form

Et
∑∞

τ=1
δτH(Xt+τ , xt+τ , st+τ ) = A2(Xt, xt, it, st) (B.7)

(this case is also treated in Marcet and Marimon (1998, 2019)). The constraint can easily be

rewritten of the form (B.4). First, introduce the additional forward-looking variable

x2,t ≡ Et
∑∞

τ=0
δτH(Xt+τ , xt+τ , st+τ ) = H(Xt, xt, st) + δEtx2,t+1.

Second, replace (B.7) by the two constraints

δEtx2,t+1 = −H(Xt, xt, st) + x2t,

0 = A2(Xt, xt, it, xt) +H(Xt, xt, st)− x2t.

These two constraints are obviously of the same form as (B.4), since they can be written

EtH̃(Xt+1, xt+1, x2,t+1, st+1) = Ã2(Xt, xt, xt2, it, st),

where

H̃(Xt, xt, x2t, st) ≡

 δx2t

0

 ,
Ã2(Xt, xt, xt2, it, st) ≡

 −H(Xt, xt, st) + x2t

A2(Xt, xt, it, xt) +H(Xt, xt, st)− x2t

 .
Note that it should be possible to use the recursive saddlepoint method to solve nonlinear

difference equations with forward-looking variables, as in the linear case.
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