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Abstract
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1 Introduction

Explicit in�ation targeting has received considerable attention during the last few years. Mon-

etary policy in New Zealand, Canada, UK, Sweden, Finland, Australia and Spain has explicit

in�ation targets. Two recent conference volumes, Leiderman and Svensson (1995) and Haldane

(1995), and an increasing number of research papers deal with di¤erent aspects of in�ation tar-

geting. At a recent symposium (Federal Reserve Bank of Kansas City (1996)), the four major

papers (by Stanley Fischer, Charles Freedman, Mervyn King and John Taylor) recommended

explicit in�ation targeting as the best way to achieve and maintain low and stable in�ation.1

In Svensson (1997a), I examined both the implementation and the monitoring of in�ation

targeting. In a simple closed-economy model, I showed that in�ation targeting implies that

the central bank�s conditional in�ation forecast for a horizon corresponding to the control lag

becomes an intermediate target (in line with explicit statements in King (1994) and Bowen

(1995)).2 Under what we can call strict in�ation targeting, with low and stable in�ation being the

only goal for monetary policy (a zero weight on output stabilization), this implies that the central

bank should adjust its instrument such that the conditional in�ation forecast for the control lag

equals the in�ation target. Under what we may call �exible in�ation targeting (with a positive

weight on output stabilization), the conditional in�ation forecast should instead be adjusted

gradually towards the in�ation target. I also argued that in�ation targeting allows e¢cient

monitoring of monetary policy by the public, especially if the central bank makes the conditional

in�ation forecast an explicit intermediate target, and publishes and allows public scrutiny of its

in�ation forecast, including models, analyses and judgements. Then the conditional in�ation

forecast becomes an ideal intermediate target, in that it is the current variable most correlated

with the goal, is easier to control than the goal, is easier to observe than the goal, and by implying

extremely transparent principles for monetary policy is most conducive to public understanding

of monetary policy. I also showed that in�ation targeting is more e¢cient, in the sense of

bringing lower in�ation variability, than money growth or exchange rate targeting.

In the present paper I extend the analysis of the implementation of in�ation targeting to

1 See Svensson (1997a), for instance, for further references to the literature on in�ation targeting.
2 I would like to argue that this is also in line with statements in Mayes and Riches (1996, p. 7), and certainly

with the practice at the Reserve Bank of New Zealand: �The current operational framework employed by the
Reserve Bank is based directly on forecasts of in�ation. No intermediate targets are set. To determine if monetary
conditions should be tighter or looser than at present, the current in�ation forecast is compared with the speci�ed
objective. If in�ation is forecast to be outside the target band within the forecast horizon (the next two to eight
quarters) then some change of policy settings is required.� In spite of the second sentence in this quotation, I
interpret it as implying that the in�ation forecast is used as an intermediate target. Then, the second sentence
might be interpreted as �No intermediate targets [for variables other than the in�ation forecast] are set.�
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the monetary policy response to di¤erent shocks (section 3), to the consequences of model

uncertainty (section 4), to the e¤ects of interest rate smoothing and stabilization (section 5),

to a comparison with nominal GDP targeting (section 6), and to the implications of forward-

looking behavior (section 7). Section 2 restates the result that in�ation targeting implies that the

conditional in�ation forecast becomes an intermediate target, and shows how that intermediate

target is a¤ected by a positive weight on output gap stabilization. This section goes beyond

Svensson (1997a) in incorporating a stochastic �natural rate� level of output and exogenous

variables. Section 8 concludes. Appendices A to E contain some technical details.

2 In�ation forecast targeting

This section shows that conditional in�ation targeting implies that the conditional in�ation

forecast for a horizon corresponding to the control lag becomes an intermediate target. Although

the result can be demonstrated in a much more elaborate model with a more explicit role for

agents� expectations, a much simpler model is su¢cient.3 The model nevertheless has some

structural similarity to more elaborate models used by certain central banks. Section 7 discusses

some issues that arise with a more forward-looking model.

The important aspects of the model are that the monetary authority has imperfect control

over in�ation, that in�ation and the output gap react with a lag to changes in the monetary policy

instrument, that in�ation reacts with a longer lag than the output gap, and that a stochastic

persistent �natural (rate)� level of output and some exogenous variables (like oil prices) also

play a role. Consider the following model with an acceleration Phillips curve and an aggregate

demand equation,

¼t+1 = ¼t + ®yyt + "t+1 (2.1)

yt+1 = ~̄
yyt + ¯xxt ¡ ¯r(it ¡ ¼t+1jt) + ´t+1 (2.2)

xt+1 = °xt + µt+1; (2.3)

where ¼t = pt ¡ pt¡1 is the in�ation (rate) in year t, pt is the (log) price level, yt is the output
gap (the log of the ratio of output to the natural output level), xt is an exogenous variable, it

is the monetary policy instrument or operating target (for instance, a short repo rate or the

3 For instance, it is not necessary to assume the systematic discretionary in�ation bias (due to �time-consistency�
problems) emphasized in the modern �principal-agent� approach to central banking (for instance in the work by
Barro and Gordon (1983), Rogo¤ (1985), Cukierman (1992), Walsh (1995), Persson and Tabellini (1993) and
Svensson (1997b)) and disputed in the �traditional� approach (for instance in McCallum (1995) and Romer and
Romer (1996)); see Tabellini (1995) for discussion of these approaches.
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federal funds rate), ¼t+1jt denotes Et¼t+1 (the in�ation in year t+1 expected in year t), and "t,

´t and µt are i.i.d. shocks in year t that are not known in year t¡ 1. The coe¢cients ®y, ~̄y and
¯r are assumed to be positive; ° ful�lls 0 · ° · 1.

In this annual discrete-time model, the instrument it can be interpreted as a short interest

rate that is held constant by the monetary authority from one year to the next. Then it can be

interpreted as a one-year interest rate controlled by the monetary authority, and it¡¼t+1jt as a
real one-year interest rate.

The change in in�ation is increasing in the lagged output gap. The output gap is serially

correlated and decreasing in the lagged real interest rate, it ¡ ¼t+1jt. The real interest rate
a¤ects the output gap with a one-year lag, and hence in�ation with a two-year lag, the control

lag for in�ation in the model. That the instrument a¤ects in�ation with a longer lag than it

a¤ects the output gap is consistent with results from a number of VAR-studies. The average

output gap, E[yt], is zero, and the average real interest rate, E[it ¡ ¼t+1jt], is normalized to
zero. As clari�ed in appendix A, the exogenous variable xt can be interpreted (when ° > 0)

as a persistent disturbance to the natural level of output (in which case ´t+1 is the di¤erence

between a temporary demand shock and a shock to the natural output level), or a persistent

disturbance to aggregate demand.4

In�ation expectations ¼t+1jt in year t are by (2.1) predetermined and ful�ll

¼t+1jt = ¼t + ®yyt: (2.4)

Using (2.4) in (2.2) results in the reduced form aggregate demand equation

yt+1 = ¯yyt + ¯xxt ¡ ¯r(it ¡ ¼t) + ´t+1; (2.5)

where

¯y = ~̄y + ®y¯r;

and it ¡ ¼t may be called a �pseudo-real� repo rate. Thus, the model can be represented by
(2.1), (2.5) and (2.3).5

4 A more elaborate model would include a long real interest rate in the aggregate demand function and link the
long nominal rate to the repo rate via the expectations hypothesis, for instance as in Fuhrer and Moore (1995).
Strictly speaking, cf. McCallum (1989), the model violates the natural-rate hypothesis (of no long-run e¤ect on

output or employment of any monetary policy), in that a steady increasing in�ation rate permanently increases
the output gap. Such policies will never be optimal with the loss functions to be used in this paper. If such
policies would be attempted, the presumption is that the model would break down.

5 In this form, the model is the same as the one in Taylor (1994), except for the lag in the aggregate demand
equation and the exogenous variable (the explicit natural output level in appendix A).
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Interpret in�ation targeting as monetary policy being conducted by a monetary authority

with a long-run in�ation target ¼¤ (say 2 percent per year) but with no long-run output gap

target (other than the long-run average, zero). Furthermore, in the short-run, the monetary

authority wants to reduce in�ation �uctuations around the long-run in�ation target, and output

gap �uctuations around zero.6 This can be formalized as the monetary authority�s intertemporal

loss function being

Et

1X
¿=t

±¿¡tL(¼¿ ; y¿ ); (2.6)

where Et denotes expectations conditional upon information available in year t, the discount

factor ± ful�lls 0 < ± < 1, and the period loss function L(¼¿ ; y¿ ) is

L(¼¿ ; yt) =
1

2

h
(¼¿ ¡ ¼¤)2 + ¸y2t

i
; (2.7)

where ¸ ¸ 0 is the weight on output gap stabilization. That is, the monetary authority wishes
to minimize the expected sum of discounted squared future deviations of in�ation and output

from the in�ation target and the natural output level, respectively.7

In appendix B, it is shown that the �rst-order condition for minimizing (2.6) over the repo

rate can be written

¼t+2jt(it) = ¼¤ + c(¸)
³
¼t+1jt ¡ ¼¤

´
: (2.8)

Here ¼t+2jt(it)denotes the �two-year conditional in�ation forecast�, E [¼t+2jit;¼t; yt; xt], the fore-
cast for annual in�ation from year t+1 to year t+2, conditional upon a given instrument level

it, and conditional upon the predetermined state variables in year t (¼t, yt and xt). It is given

by

¼t+2jt (it) ´ ¼t + ayyt + axxt ¡ ar (it ¡ ¼t) ; (2.9)

where

ay = ®y(1 + ¯y); ax = ®y¯x and ar = ®y¯r: (2.10)

The one-year in�ation forecast, ¼t+1jt, is predetermined and given by (2.4). The coe¢cient c(¸)

is a function of the relative weight ¸ given by

c(¸) ´ ¸

¸+ ±®2yk(¸)
(2.11)

6 Cf. Fischer (1996), King (1996) and Svensson (1997b) on whether in�ation targeting also involves implicit
goals for output or employment.

7 Since the central bank does not have perfect control over in�ation it is not meaningful to minimize the realized
squared deviations, only the expected squared deviations (conditional upon the information available when the
repo rate is set).
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and ful�lls 0 · c(¸) < 1, and the coe¢cient k(¸) is another function of ¸ given by

k(¸) ´ 1

2

0B@1¡ ¸(1¡ ±)
±®2y

+

vuutÃ1 + ¸(1¡ ±)
±®2y

!2
+
4¸

®2y

1CA ¸ 1: (2.12)

Under strict in�ation targeting, when the weight on output gap stabilization is zero (¸ = 0)

and only in�ation enters in the loss function, the coe¢cients ful�ll c(0) = 0 and k(0) = 1. Then

the �rst-order condition simpli�es to

¼t+2jt(it) = ¼¤: (2.13)

The monetary authority should adjust its instrument such that the two-year conditional in�ation

forecast always equals the in�ation target.

Under �exible in�ation targeting, when there is a positive weight on output gap stabilization

(¸ > 0) and both in�ation and the output gap enter the loss function, the interpretation of the

�rst-order condition (2.8) is still intuitive. The monetary authority should adjust the instrument

such that the deviation of the two-year conditional in�ation forecast from the long-run in�ation

target is a fraction c(¸) of the deviation of the pre-determined one-year in�ation forecast from

the in�ation target. Instead of always adjusting the two-year conditional in�ation forecast all

the way to the long-run in�ation target, the monetary authority should adjust the two-year

conditional in�ation forecast gradually towards the long-run in�ation target. The intuition is

that this reduces output gap �uctuations, which is apparent from (2.1). The higher the weight on

output gap stabilization, the slower the adjustment of the conditional in�ation forecast towards

the long-run in�ation target (the larger the coe¢cient c(¸), see appendix B). The right-hand

side of (2.8) can hence be interpreted as a variable short-run target for the two-year in�ation

forecast.

In general, (2.8) and its variant (2.13) imply that the two-year conditional in�ation forecast,

the conditional in�ation forecast corresponding to the control lag, can be interpreted as an

explicit intermediate target. As in Svensson (1997a), I call (2.8) and its variant (2.13) a(n)

(intermediate-)target rule, a rule that speci�es the intermediate-target variable and how its

target level is determined. The monetary authority then adjusts the repo rate so as to always

ful�ll the target rule. If the two-year conditional in�ation forecast exceeds (falls short of) the

right-hand sides of (2.8) or (2.13), the repo rate should be increased (decreased). This results

in an endogenous reaction function, an instrument rule, expressing the instrument as a function
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of current information.8

Thus, substitution of the forecasts (2.4) and (2.9) into (2.8) leads to the optimal instrument

rule

it = ¼t + f¼ (¸) (¼t ¡ ¼¤) + fy (¸) yt + fxxt; (2.14)

where

f¼ (¸) =
1¡ c(¸)
®y¯r

; fy (¸) =
¯y + 1¡ c(¸)

¯r
and fx =

¯x
¯r
: (2.15)

The instrument rule (2.14) is of the same form as the Taylor rule (1993, 1996), except that

it also depends on the exogenous variable. The pseudo-real repo rate it ¡ ¼t is increasing in
the excess of current in�ation over the in�ation target and in the current output gap. The

instrument depends on current variables, not because current variables are targeted (they are

predetermined) but because current variables predict future variables. Even if the weight on

output gap stabilization is zero, so that only future in�ation is targeted, the instrument will

depend on all current variables that help predict future in�ation.9

Note that the instrument rule can also be written as a function of the predetermined one-year

in�ation expectations, ¼t+1jt, rather than in terms of current in�ation,

it = ¼t+1jt + f¼(¸)(¼t+1jt ¡ ¼¤) + ~fyyt + fxxt,

where

~fy =
~̄
y

¯r
:

Indeed, by leading (2.1) and (2.2) one period and taking expectations,

¼t+2jt = ¼t+1jt + ®yyt+1jt

yt+1jt = ~̄
yyt + ¯xxt ¡ ¯r(it ¡ ¼t+1jt),

we realize that we can consistently regard ¼t+1jt, yt and xt as the relevant state variables, rather

than ¼t, yt and xt.

8 Bryant, Hooper and Mann (1993) use the terminology �exact targeting� (�full instrument adjustment�) and
�inexact targeting� (�partial instrument adjustment�). Under the former, the instrument is adjusted to make the
intermediate-target variable exactly equal to its desired value. Under the latter, the instrument is only adjusted
to partially reduce the deviation of the intermediate-target variable from its desired value.
Strict in�ation targeting is then an example of exact targeting, since the instrument is adjusted to make the

intermediate target ¼t+2jt(it) exactly equal to its desired value, ¼¤. Flexible in�ation targeting can be seen as
either exact targeting or inexact targeting, depending upon whether the �desired value� is identi�ed with the
short -run target level, ¼¤ + c(¸)(¼t+1jt ¡ ¼¤), or the long -run target level, ¼¤.

9 See Broadbent (1996) for an insightful discussion of Taylor rules in relation to in�ation targeting. See also
the comment by Svensson (1996) on Taylor (1996).
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Actual in�ation in year t + 2 will unavoidably deviate from the in�ation target and the

two-year conditional in�ation forecast by a forecast error,

¼t+2 ¡ ¼t+2jt = "t+1 + ®y´t+1 + "t+2; (2.16)

due to disturbances that occur within the control lag, after the monetary authority has set

the instrument. Here ¼t+2jt denotes the two-year in�ation forecast (2.9) conditional upon the

instrument rule (2.14),

¼t+2jt ´ ¼t+2jt [¼t + f¼ (¼t ¡ ¼¤) + fyyt + fxxt] :

From (2.8) and (2.4) the two-year in�ation forecast will follow

¼t+2jt ¡ ¼¤ = c(¸) (¼t ¡ ¼¤) + c(¸)®yyt:

From (2.5), (2.14) and (2.15), the output gap will follow

yt+1 = ¯yyt + ¯xxt ¡ ¯r [f¼ (¼t ¡ ¼¤) + fyyt + fxxt] + ´t+1
= ¡ 1¡ c(¸)

®y
(¼t ¡ ¼¤)¡ [1¡ c(¸)] yt + ´t+1:

To generalize from this model, in�ation targeting implies that the conditional in�ation fore-

cast for a horizon corresponding to the control lag (two years in the model) becomes an inter-

mediate target. Under strict in�ation targeting (no weight on output gap stabilization), the

instrument should be set so as to make the conditional in�ation forecast equal to the in�ation

target. Under �exible in�ation targeting (some weight on output gap stabilization), the in-

strument should be set so as to make the two-year conditional in�ation forecast approach the

long-run in�ation target gradually. This behavior results in the optimal reaction function of the

monetary authority. Since the conditional in�ation forecast depends on all relevant information,

the instrument will be a function of all relevant information.

The monetary authority�s conditional in�ation forecast must, in practice, combine both

formal and informal components, for instance with judgemental adjustments of more formal

structural forecasts. Forecasts will hardly ever be purely mechanical. This view is strengthened

by the results of Cecchetti (1995), who has examined mechanical reduced-form in�ation forecasts

for the United States, with rather negative results. Forecast errors are sizeable, and there are

frequent structural shifts in the forecast equations. However, forecast errors for one-year in�ation

rates, for instance for the one-to-two-year in�ation rate emphasized in the model used here, are
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smaller than for one-quarter in�ation rates. As emphasized by Kohn (1995), more structural

modeling and use of extramodel information and judgment by forecasters are likely to produce

forecasts with acceptable precision. In addition, forecasting in�ation may be easier in a situation

when the monetary authority actively pursues in�ation targeting and the public expects the

monetary authority to pursue in�ation targeting so that in�ation expectations are stabilized.10

This is illustrated in section 7 which deals with forward-looking behavior.

3 Response to shocks

How should monetary policy react to shocks?11 The conventional wisdom is that monetary

policy should neutralize aggregate demand shocks, since these move in�ation and the output

gap in the same direction. With regard to supply shocks, the conventional wisdom is that

the response depends on the weight on output gap stabilization. With a positive weight, it is

optimal to partially accommodate supply shocks, since they a¤ect in�ation and the output gap

in opposite directions. With a zero weight, the supply shock e¤ect on in�ation is neutralized,

even though this enhances the e¤ect on the output gap.

When lags are taken into account, the conventional wisdom must be modi�ed. First, the

monetary authority cannot a¤ect the �rst-round e¤ects on in�ation and the output gap of

supply and demand shocks, due to the lags. It can only mitigate the second-round e¤ects.

Second, the reaction to temporary demand and supply shocks appears more symmetric. Third,

the reaction to both shocks di¤ers with the weight on output gap stabilization. Under strict

in�ation targeting (with a zero weight on output gap stabilization), the two-year conditional

in�ation forecast is brought in line with the long-run in�ation target, regardless of how the

shocks have a¤ected the one-year in�ation forecast. Hence, shocks are not allowed to let the

two-year conditional in�ation forecast deviate from the long-run target. Under �exible in�ation

targeting (with a positive weight on output gap stabilization), the two-year conditional in�ation

forecast is adjusted less in response to the shocks. The e¤ect of these shocks on future in�ation

is only gradually eliminated.

A general, and operational, way to determine the appropriate response to the shocks is to

��lter the shocks through the conditional in�ation forecast, and then take appropriate action.�

10 For instance, the Reserve Bank of New Zealand has been able to keep the underlying in�ation rate in New
Zealand within a 1.3 percentage point range since 1991 (Reserve Bank of New Zealand (1996)).
11 See Freedman (1996) for a more detailed discussion of the optimal response to shocks under in�ation targeting,

including the response to di¤erent shifts in in�ation expectations. Such shifts can be examined in the forward-
looking model in section 7.
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More speci�cally, the e¤ects of the shocks on the one-year and two-year in�ation forecasts are

assessed, and then the instrument is adjusted so that the �rst-order condition (2.8) still holds.

In order to see this, consider shocks in year t. By (2.4) these shocks will change the one-year

in�ation forecast by

¼t+1jt ¡ ¼t+1jt¡1 = (¼t ¡ ¼tjt¡1) + ®y(yt ¡ ytjt¡1)
= "t + ®y(~́t ¡ »t); (3.1)

where I use the more elaborate model in appendix A in which the shock to the output gap,

´t = ~́t ¡ »t;

consists of the di¤erence between a temporary demand shock, ~́t; and a shock to the natural

output level, »t. By the analog of (2.9) in appendix A, (A.9), the shocks will change the two-year

conditional in�ation forecast by

¼t+2jt ¡ ¼t+2jt¡1 =
h
(1 + ar)(¼t ¡ ¼tjt¡1) + ay(yt ¡ ytjt¡1) + az(zt ¡ ztjt¡1) + an(ynt ¡ yntjt¡1)

i
¡ ar(it ¡ itjt¡1)

= [(1 + ar)"t + ay(~́t ¡ »t) + az³t + an»t]¡ ar(it ¡ itjt¡1); (3.2)

where zt is a persistent demand disturbance, ³t is a shock to this demand disturbance, y
n
t is (the

log of) the natural output level, and the coe¢cients ar, ay, az and an are given by (A.10)�(A.13).

The term within brackets in (3.2) is the change in the two-year conditional in�ation forecast due

to the shocks, and the other term is the change due to the change in the instrument, it ¡ itjt¡1.
The changes in the one-year and two-year in�ation forecasts must obey the �rst-order con-

dition (2.8), which implies that they must ful�ll

¼t+2jt ¡ ¼t+2jt¡1 = c(¸)
³
¼t+1jt ¡ ¼t+1jt¡1

´
: (3.3)

Thus, (3.1)�(3.3) determine the required change in the instrument.

Solving for the instrument change results in

it ¡ itjt¡1 =
[(1 + ar)"t + ay(~́t ¡ »t) + az³ + an»t]¡ c(¸) ["t + ®y(~́t ¡ »t)]

ar

=
[1 + ®y¯r ¡ c(¸)] "t + ®y[1 + ¯y ¡ c(¸)]~́t ¡ ®y [1 + ®y¯r + °n ¡ c(¸)] »t + ®y¯z³t

®y¯r
;

(3.4)
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where I have used (A.5)�(A.6) and (A.10)�(A.13), and °n (0 · °n · 1) is the degree of persis-
tence of the natural output level (for °n = 1 the natural output level is a random walk). The

numerator in (3.4) is the change in the two-year conditional in�ation forecast caused by the

shocks, less the fraction c(¸) of the change in the one-year in�ation forecast due to the shock.

The denominator is the policy multiplier of the instrument for the two-year conditional in�ation

forecast.

We see that the response to the shocks vary with the relative weight on output gap stabi-

lization, ¸, via the e¤ect on the coe¢cient c(¸). A positive in�ation shock, "t, and a positive

temporary demand shock, ~́t, both motivate an increase in the instrument. Those increases are

smaller with a higher weight on output stabilization, since c(¸) is increasing in ¸. A positive

shock to the natural output level, »t, motivates a fall in the instrument. The fall is larger for

more persistence, °n, and a lower relative weight on output gap stabilization, ¸. A shock to the

persistent demand disturbance, ³t, leads to an increase in the instrument, independent of the

weight on output gap stabilization.

The response coe¢cients for the shocks in (3.4) are of course the same coe¢cients as in the

instrument rule for the more elaborate model in appendix A, (A.14).

4 Model uncertainty

In this section, I consider model uncertainty, in the form of uncertainty about the coe¢cients

in the model (2.1)�(2.3). Let me simplify the model somewhat by disregarding the exogenous

variable (¯x = 0). Restate the model as

¼t+1 = ¼t + ®ytyt + "t+1 (4.1)

yt+1 = ~̄
ytyt ¡ ¯rt

³
it ¡ ¼t+1jt

´
+ ´t+1; (4.2)

where the coe¢cients ®y, ~̄y and ¯r have been dated according to the year they refer to. For

simplicity, consider only the case of strict in�ation targeting (¸ = 0). Then the problem to

minimize (2.6) simpli�es to the period-by-period problem (see Svensson (1997a) for details)

min
it
±2Et

·
1

2
(¼t+2 ¡ ¼¤)2

¸
subject to

¼t+2 = ¼t+2jt (it) + "t+1 + ®y;t+1´t+1 + "t+2;
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where

¼t+2jt (it) = ¼t+1jt + ®y;t+1yt+1jt

= ¼t+1jt + ~ay;t+1yt ¡ ar;t+1
³
it ¡ ¼t+1jt

´
¼t+1jt = ¼t + ®ytyt; (4.3)

and where I use the notation

~ay;t+1 = ®y;t+1 ~̄yt and ar;t+1 = ®y;t+1¯rt

and observe that ¼t+1jt is predetermined.

Assume �rst that the coe¢cients ®yt, ~̄yt and ¯rt remain constant. Then the �rst-order

condition for this problem is the target rule

¼t+2jt (it) = ¼¤; (4.5)

as we saw in section 2.

Now, following the classic analysis of Brainard (1967) (the relevance of which has recently

been emphasized by Blinder (1995), see also Chow (1975, chapt. 10)), consider the alternative

problem when there is model uncertainty in the form of uncertainty in year t, when the in-

strument is chosen, about the coe¢cient ~ay;t+1 and the policy multiplier ar;t+1, resulting from

uncertainty about the coe¢cients ®yt, ~̄yt and ¯rt. More precisely, let the ®yt be known at t,

and let

®y;t+1 = ®y + º®y;t+1

~̄
yt = ~̄

y + º¯yt

¯rt = ¯r + º¯rt

where º®y;t+1, º¯yt and º¯rt are i.i.d. stochastic disturbances with zero means and given vari-

ances/covariances. The realizations of these disturbances become known in year t + 1. For

simplicity, assume that º®y;t+1 is uncorrelated with º¯yt and º¯rt. Then we can write

~ay;t+1 = ~ay + ºy;t+1

ar;t+1 = ar + ºr;t+1;

where ºy;t+1 and ºr;t+1 are zero mean i.i.d. disturbances, and

~ay = ®y ~̄y; ar = ®y¯r: (4.6)
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Thus, in year t, the parameters in the current Phillips curve are known, but not those of next

year�s Phillips curve, and not those of the current aggregate demand equation. These are instead

known in year t + 1. That is, we assume that all uncertainty relevant for the policy decision

in year t is resolved in year t + 1. In particular, there is a new realization of the stochastic

disturbance terms each year, with unchanged variances and covariances. Therefore, there is

nothing that can be learned to reduce the uncertainty, and there is no point in experimenting

in order to learn more about the stochastic properties of the model. The fact that there is no

role for experimentation and learning simpli�es the analysis considerably.12

Under these assumptions, the constraint in year t can be written

¼t+2 = ¼t+1jt + (~ay + ºy;t+1) yt ¡ (ar + ºr;t+1)
³
it ¡ ¼t+1jt

´
+ "t+1 + ®y;t+1´t+1 + "t+2; (4.7)

where the one-year in�ation forecast, ¼t+1jt, remains predetermined and given by (4.3). Let

ºy;t+1 and ºr;t+1 have variances and covariance ¾2y, ¾
2
r and ¾yr, respectively.

13 Furthermore,

let the covariance of ºr;t+1 with 't+1 ´ "t+1 + ®y´t+1 be ¾'r. It follows that the two-year

conditional in�ation forecast is given by

¼t+2jt (it) ´ ¼t+1jt + ~ayyt ¡ ar
³
it ¡ ¼t+1jt

´
: (4.8)

With the constraint (4.7), the �rst-order condition is

0 = ±2Et

·
(¼t+2 ¡ ¼¤) @¼t+2

@it

¸
= ¡ ±2Et

nh
¼t+1jt + (~ay + ºy;t+1) yt ¡ (ar + ºr;t+1) (it ¡ ¼t+1jt)

+ 't+1 + "t+2 ¡ ¼¤
¤ª
(ar + ºr;t+1)

= ¡ ±2
³
¼t+2jt (it)¡ ¼¤

´
ar ¡ ±2¾yryt + ±2¾2r

³
it ¡ ¼t+1jt

´
¡ ±2¾'r:

We can rewrite the �rst-order condition as

¼t+2jt(it)¡ ¼¤ = ¡
¾yr
ar
yt +

¾2r
ar

³
it ¡ ¼t+1jt

´
¡ ¾'r
ar
: (4.9)

It is clear that with multiplier uncertainty, the variances and covariances of the multiplier will

a¤ect the solution and make it deviate from (4.5). The standard certainty-equivalence in the

linear-quadratic model breaks down.
12 On learning and experimenting, see, for instance, Prescott (1972), Chow (1975, chapt. 11), Bertocchi and

Spagat (1993) and Balvers and Cosimano (1994).
13 If there is uncertainty in ®y;t+1 (or ~̄yt) alone with variance ¾

2
®y (or ¾

2
¯y), we have ¾

2
r = ¯

2
r¾

2
®y (or ¾

2
r = 0)

and ¾yr = ~̄
y¯r¾

2
®y (or ¾yr = 0). If there is uncertainty in ¯rt alone, with variance ¾

2
¯r, we have ¾

2
r = ®

2
y¾

2
¯r and

¾yr = 0.
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We can discuss the optimal policy either in terms of target rules or instrument rules. Let us

�rst look at instrument rules. Using (4.8) in (4.9), we can solve for the optimal instrument rule,

it = ¼t+1jt +
1

(1 + vr)ar

³
¼t+1jt ¡ ¼¤

´
+
~ay + ¾yr=ar
(1 + vr) ar

yt +
¾'r=ar

(1 + vr) ar
; (4.10)

where

vr =
¾2r
a2r

is the coe¢cient of variation of the policy multiplier ar.

In order to interpret the instrument rule (4.10), consider the special case of �independent

multiplier uncertainty�, when ¾2r > 0, but ºr is not correlated with ºy or ', that is, ¾yr = ¾'r =

0. This is the case when there is uncertainty in ¯rt alone, and when ¯rt is uncorrelated with

't+1. Then (4.10) simpli�es to

it = ¼t+1jt +
1

(1 + vr)ar

³
¼t+1jt ¡ ¼¤

´
+

~ay
(1 + vr) ar

yt: (4.11)

We see that more uncertainty (a higher coe¢cient of variation vr) leads to a more �conservative�

and less activist policy, in the sense of reducing the magnitude of the response coe¢cients.

In order to interpret the policy further, consider two extreme cases. First, consider the

case with no (policy) multiplier uncertainty (¾2r = 0), as in section 2. Then vr = 0, and the

instrument rule is

it = i
0
t ´ ¼t+1jt +

1

ar

³
¼t+1jt ¡ ¼¤

´
+
~ay
ar
yt; (4.12)

which I call the �no-multiplier-uncertainty� policy.

Next, consider the other extreme, with in�nite uncertainty (¾2r ! 1). The model and
its policy are of course meaningless with unbounded uncertainty, so this case only serves as a

hypothetical reference point. It follows from (4.11) that the optimal policy is then to set the

interest equal to expected in�ation, so as to make the real interest rate equal to zero,

it = i
1 ´ ¼t+1jt: (4.13)

I call this the �in�nite-multiplier-uncertainty� policy. Intuitively, with large uncertainty in the

coe¢cient ¯rt in (4.2), it is best to choose the instrument so that the real interest rate is close to

zero, in order to limit the variability of in�ation. For in�nite uncertainty, when the real interest

rate is held constant at zero, in�ation becomes non-stationary.14

14 The appropriate response when uncertainty becomes very large is of course dependent on the precise model
and nature of the uncertainty. From (4.1) and (4.2) it is apparent that if the uncertainty is in ®yt or in ~̄yt rather
than in ¯rt, the appropriate response with in�nite uncertainty is to set the instrument such that yt+1jt = 0, rather
than it ¡ ¼t+1jt = 0.
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The instrument rule (4.11) can now be written as a convex combination of the no-multiplier-

uncertainty instrument rule and the in�nite-multiplier-uncertainty instrument rule,

it =
1

1 + vr
i0t +

vr
1 + vr

i1t : (4.14)

Thus, the monetary authority is more conservative with independent multiplier uncertainty than

without any multiplier uncertainty, in the sense that its policy is an average of the policy without

uncertainty and the policy for in�nite uncertainty (which makes the real interest rate equal to

its long-run average).

Next, we shall look at this in terms of target rules. The two-year conditional in�ation forecast

that corresponds to the no-multiplier-uncertainty policy and the in�nite-multiplier-uncertainty

policy is ¼t+2jt
¡
i0t
¢
= ¼¤ and

¼t+2jt (i1t ) = ¼
1
t+2jt ´ ¼t+1jt + ~ayyt;

respectively. Since the two-year conditional in�ation forecast is linear in the instrument, it

follows that it will be a convex combination of the long-run in�ation target and the in�nite-

multiplier-uncertainty two-year conditional in�ation forecast with the same weight as in (4.14),

¼t+2jt (it) =
1

1 + vr
¼¤ +

vr
1 + vr

¼1t+2jt

= ¼¤ +
vr

1 + vr

³
¼1t+2jt ¡ ¼¤

´
= ¼¤ +

vr
1 + vr

³
¼t+1jt ¡ ¼¤

´
+
vr~ay
1 + vr

yt:

Thus, the two-year conditional in�ation forecast deviates from the in�ation target by a

fraction vr
1+vr

of the deviation of the in�nite-multiplier-uncertainty two-year in�ation forecast

from the in�ation target. Equivalently, the two-year conditional in�ation forecast deviates from

the in�ation target by the sum of the same fraction of the deviation of the one-year in�ation

forecast from the in�ation target and a term proportional to the output gap. In the case of

�exible in�ation targeting, the two-year conditional in�ation forecast is only gradually adjusted

towards the in�ation target.

In the general case, when multiplier uncertainty is not independent, the policy (4.10) involves

a constant, ¾'r=ar
(1+vr)ar

. The coe¢cient of yt is also modi�ed, and a¤ected by the covariance ¾yr.

The constant will make average in�ation deviate from the long-run in�ation target. The long-run

average follows directly from (4.9) and ful�lls

E [¼t] = ¼
¤ ¡ ¾'r

ar
; (4.15)
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where I have used that E [yt] = 0 and E [it] = E [¼t]. Thus, the average in�ation deviates from

the in�ation target, the bias being positive or negative depending on the sign of the covariance

between the policy multiplier and the disturbance to in�ation, ¾'r. The two-year conditional

in�ation forecast will be

¼t+2jt (it) = ¼¤ +
vr

1 + vr

³
¼1t+2jt ¡ ¼¤

´
¡ ¾yr=ar
1 + vr

yt ¡ ¾'r=ar
1 + vr

= ¼¤ +
vr

1 + vr

³
¼t+1jt ¡ ¼¤

´
+
vr~ay ¡ ¾yr=ar

1 + vr
yt ¡ ¾'r=ar

1 + vr
:

The two-year conditional in�ation forecast is mean-reverting and gradually adjusted towards

(4.15).

In summary, model uncertainty in the form of policy-multiplier uncertainty motivates devia-

tions from the long-run in�ation target. Under strict in�ation targeting, without any multiplier

uncertainty, the two-year conditional in�ation forecast should always equal the long-run in�ation

target. With independent policy-multiplier uncertainty, the optimal policy is a convex combina-

tion of the no-multiplier-uncertainty policy and the in�nite-multiplier-uncertainty policy, which

results in the two-year conditional in�ation forecast being gradually adjusted towards the long-

run in�ation target. When policy-multiplier uncertainty is not independent, there may be a bias

in average in�ation, and the response of the two-year conditional in�ation forecast to the output

gap is modi�ed.

5 Interest rate stabilization and smoothing

How is in�ation targeting a¤ected by attempts to stabilize and/or smooth the instrument?15

Modify the period loss function to

L(¼t; yt; it; it ¡ it¡1) = 1

2

h
(¼t ¡ ¼¤)2 + ¸y2t + ¹ (it ¡ ¼t)2 + º (it ¡ it¡1)2

i
: (5.1)

This allows for a weight ¹ ¸ 0 on stabilizing the pseudo-real rate, it¡¼t, as well as a weight º ¸ 0
on smoothing the instrument (stabilizing the �rst-di¤erence of the instrument). Alternatives to

stabilizing the pseudo-real rate are, of course, to stabilize the real interest rate, it ¡ ¼t+1jt, or
the nominal interest rate it itself. Since other variables than in�ation enters the loss function,

this is another case of �exible in�ation targeting.

Minimizing the intertemporal loss function (2.6) with the period loss function (2.7) replaced

by (5.1) generally seems to require a numerical solution of the standard linear-quadratic optimal

15 See Goodhart (1996) for a recent discussion of interest rate smoothing.

15



control problem, see appendix C. In particular, when º > 0, the lagged instrument enters as

a state variable, which together with in�ation and the output gap brings the number of state

variables to three (excluding the exogenous variable).

In order to gain some insight into the e¤ects of interest rate stabilization and smoothing,

without having to resort to numerical analysis, let me make a few simpli�cations. First, the

weight on output stabilization is set to zero. Second, each period the monetary authority solves

the simple problem

min
it

1

2

h
±2 (¼t+2 ¡ ¼¤)2 + ¹ (it ¡ ¼t)2 + º(it ¡ it¡1)2

i
(5.2)

subject to

¼t+2 = ¼t + ayyt ¡ ar(it ¡ ¼t) + "t+1 + ®y´t+1 + "t+2;

where I use (2.9), (2.10) and (2.16), and for simplicity disregard the exogenous variable (ax =

¯x = 0).

The monetary authority is assumed to minimize the loss function in (5.2) each period, taking

last year�s interest rate as given, but disregarding that today�s instrument setting will a¤ect next

year�s loss function. When ¸ = ¹ = º = 0, this problem is equivalent to the general intertemporal

problem, as demonstrated in Svensson (1997a). When either ¹ or º di¤ers from zero, this is no

longer true. Nevertheless, the simple case of (5.2) helps to understand the general consequences

of instrument stabilization and smoothing.

The �rst-order condition is

±2
³
¼t+2jt (it)¡ ¼¤

´
(¡ar) + ¹(it ¡ ¼t) + º(it ¡ it¡1) = 0: (5.3)

We can write the �rst-order condition as

¼t+2jt (it) = ¼¤ +
¹

±2ar
(it ¡ ¼t) + º

±2ar
(it ¡ it¡1);

and observe that when ¹ or º di¤er from zero, the two-year conditional in�ation forecast will

generally deviate from the in�ation target.

We can solve for the instrument rule and get

it =
¹+ ±2a2r

¹+ º + ±2a2r
¼t +

º

¹+ º + ±2a2r
it¡1 +

±2ar

¹+ º + ±2a2r
(¼t ¡ ¼¤) + ±2aray

¹+ º + ±2a2r
yt: (5.4)

With a zero weight on instrument smoothing (º = 0), the instrument rule does not depend

on the lagged interest rate and is given by

it = ¼t +
±2ar

¹+ ±2a2r
(¼t ¡ ¼¤) + ±2aray

¹+ ±2a2r
yt:
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Hence, the e¤ect of a positive weight on (pseudo-real) interest rate stabilization is simply to

reduce the coe¢cients of ¼t ¡ ¼¤ and yt.
With a zero weight on interest rate stabilization (¹ = 0), the instrument rule depends on

the lagged interest rate and becomes

it =
±2a2r

º + ±2a2r
¼t +

º

º + ±2a2r
it¡1 +

±2ar

º + ±2a2r
(¼t ¡ ¼¤) + ±2aray

º + ±2a2r
yt:

Note that the instrument rule is not simply a rule for the �rst-di¤erence of the instrument.16

In this simple case, the instrument rule has an interesting interpretation. Let i¼t denote the

instrument rule under strict in�ation targeting, when ¹ = º = 0. It is given by

i¼t = ¼t +
1

ar
(¼t ¡ ¼¤) + ay

ar
yt: (5.5)

Furthermore, let iit and i
¢i
t denote the instrument rules under strict pseudo-real interest rate

stabilization (¹ ! 1, º = 0) and strict interest rate smoothing (º ! 1, ¹ = 0), respectively.
They are given by iit = ¼t and i

¢i
t = it¡1. Then the optimal instrument rule can be written as a

convex combination of the three rules,

it =
±2a2r

¹+ º + ±2a2r
i¼t +

¹

¹+ º + ±2a2r
iit +

º

¹+ º + ±2a2r
i¢it : (5.6)

Let ¼jt+2jt, j = ¼, i, ¢i, denote the two-year conditional in�ation forecast that corresponds

to each strict rule. They are given by

¼¼t+2jt = ¼¤

¼it+2jt = ¼t + ayyt = ¼t + ®yyt + ~ayyt = ¼t+1jt + ~ayyt:

¼¢it+2jt = ¼t+1jt ¡ ar(it¡1 ¡ ¼t);

where I use that by (2.10) and (4.6) ay = ®y + ~ay: It follows that the two-year conditional

in�ation forecast is the same convex combination of these three forecasts,

¼t+2jt (it) =
±2a2r

¹+ º + ±2a2r
¼¼t+2jt +

¹

¹+ º + ±2a2r
¼it+2jt +

º

¹+ º + ±2a2r
¼¢it+2jt (5.7)

= ¼¤ +
¹

¹+ º + ±2a2r

³
¼it+2jt ¡ ¼¤

´
+

º

¹+ º + ±2a2r

³
¼¢it+2jt ¡ ¼¤

´
= ¼¤ +

¹+ º

¹+ º + ±2a2r

³
¼t+1jt ¡ ¼¤

´
+

¹+ º

¹+ º + ±2a2r
~ayyt ¡ º

¹+ º + ±2a2r
ar(it¡1 ¡ ¼t):

(5.8)
16 In the monetary policy literature, it is quite common to consider only restricted classes of rules. Typical

restrictions are that the instrument, or the change in the instrument, is a linear function of the deviation of a
target variable from a target level only (cf. Bryant, Hooper and Mann (1993)). The above illustrates that such
restricted rules are generally not optimal.
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Equations (5.7)�(5.8) can be interpreted as equivalent forms of a target rule for the two-year con-

ditional in�ation forecast, implying that the two-year conditional in�ation forecast is gradually

adjusted to the in�ation target.

Generally, concerns about interest stabilization and smoothening leads to a less active pol-

icy. The two-year conditional in�ation forecast, as for �exible in�ation targeting, is adjusted

gradually towards the in�ation target. Numerical analysis of the general intertemporal problem

con�rms this insight.

As far as I can see, the result that an instrument rule can be written as a convex combination

of strict instrument rules does not necessarily hold in the general intertemporal problem. In some

special cases the result holds, but the weights are more complicated to determine.17

6 Nominal GDP targeting

Nominal GDP targeting is recommended by several researchers, for instance, Bean (1983), Mc-

Callum (1989), Hall and Mankiw (1994) and Feldstein and Stock (1994). Nominal GDP targeting

is easily examined in the current framework.

Let me de�ne gt and Yt as the (log) nominal GDP (gap) growth and nominal GDP (gap)

level, respectively. That is,

gt = ¼t + yt ¡ yt¡1
Yt = pt + yt:

Then nominal GDP growth targeting with a nominal GDP target growth rate g¤ can be inter-

preted as having the period loss function

L(¼t; yt; yt¡1) =
1

2
(¼t + yt ¡ yt¡1 ¡ g¤)2 . (6.1)

Similarly, nominal GDP level targeting with a nominal GDP target level Y ¤ can be interpreted

has having the period loss function

L(pt; yt) =
1

2
(pt + yt ¡ Y ¤)2 . (6.2)

Ball (1996) has demonstrated a somewhat surprising result. Both nominal GDP growth and

level targeting lead to instability of in�ation and the output gap in the present model . This

section will restate and discuss Ball�s result.
17 Broadbent (1996) observes for simple loss functions that the instrument rule can be written as a convex

combination of pure instrument rules.
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Disregard, for simplicity the exogenous variable, and let the model be given by (2.1) and

(2.5), the latter with ¯x = 0. Consider �rst nominal GDP growth targeting, so the monetary

authority�s problem is to minimize (2.6) where the period loss function (2.6) is replaced by (6.1).

We realize that a �rst-order condition for this problem is

¼t+1jt + yt+1jt ¡ yt = g¤: (6.3)

In year t the monetary authority controls yt+1jt whereas ¼t+1jt and yt are predetermined. The

monetary authority can hence achieve the desired nominal GDP growth rate in year t + 1 in

expectation.

Ball shows that (6.3) implies that yt and ¼t become unstable, in spite of the nominal GDP

growth target being achieved in expectation. In order to see this, rewrite (6.3) as

yt+1jt = ¡
³
¼t+1jt ¡ g¤

´
+ yt = ¡ (¼t ¡ g¤) + (1¡ ®y) yt:

We then realize that the dynamics of ¼t and yt are given by the system264 ¼t+1 ¡ g¤
yt+1

375 =
264 1 ®y

¡ 1 1¡ ®y

375
264 ¼t ¡ g¤

yt

375+
264 "t+1
´t+1

375 :
The eigenvalues are the roots ¹ of the characteristic equation

0 =

¯̄̄̄
¯̄̄ ¹¡ 1 ¡ ®y

1 ¹¡ 1 + ®y

¯̄̄̄
¯̄̄ = ¹2 ¡ (2¡ ®y)¹+ 1: (6.4)

Appendix D shows that for ®y · 4 both roots are complex and on the unit circle, whereas for
®y > 4 one root is outside and one root inside the unit circle. Hence, in both cases both ¼t and

yt are unstable. In contrast, nominal GDP growth gt ful�lls

gt = ¼t + (yt ¡ yt¡1) = g¤ + "t + ´t

and is stationary.

What is the intuition for this result? First, nominal GDP growth targeting implies that

there is a constant marginal rate of substitution (equal to unity) between in�ation and output

growth in the period loss function, since only the sum of these matter. Hence, in contrast to the

period loss function (2.7), there is no loss associated with divergent in�ation and output growth,

as long as the sum remains stationary.

Second, the realistic property of this model that the control lags for output and in�ation

are di¤erent, creates problems for nominal GDP growth targeting. Consider an initial situation
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when current in�ation and forecasts of future in�ation rates are all g¤, and the current output

gap and forecasts of future output gaps are all zero, so forecasts of future nominal GDP growth

rates are all on target. Then, suppose there is a positive shock, "t > 0, to current in�ation. This

will increase the in�ation forecast ¼t+1jt by the same magnitude. The appropriate monetary

policy response is now to increase the interest rate it, in order to reduce the output gap forecast

yt+1jt by the same magnitude. This way the nominal GDP growth forecast remains on target.

Now consider next year, t+1, and the outlook for nominal GDP growth in year t+2. Suppose,

for simplicity, that both disturbances "t+1 and ´t+1 are zero in year t+1. The in�ation forecast

¼t+2jt+1 is given by

¼t+2jt+1 = ¼t+1 + ®yyt+1.

Because of the shock to in�ation in year t; in�ation in year t+1 is "t. Output in year t+1 has

fallen to ¡"t, due to the increase in the interest rate in year t. Assume, realistically, that ®y < 1
(the instability results also holds for ®y ¸ 1). Then the in�ation forecast for year t+ 2 is

¼t+2jt+1 = (1¡ ®y) "t > 0.

The forecast for nominal GDP growth in year t+ 2 is

gt+2jt+1 = ¼t+2jt+1 + yt+2jt+1 ¡ yt+1;

where ¼t+2jt+1 is up, and yt+1 is down. Hence, for unchanged yt+2jt+1, gt+2jt is double up. Then,

yt+2jt+1 must be brought down even further than yt+1, in order to keep gt+2jt+1 in line with g¤,

which requires another increase in the interest rate in year t + 1. Clearly, in�ation and the

output gap are onto divergent paths.

The di¤erent control lags for in�ation and the output gap result in the instability of in�ation

and output. Then a modi�ed de�nition of staggered nominal GDP growth can restore stability.

Consider the following de�nition of staggered nominal GDP growth,

~gt+1 ´ ¼t+1 + yt ¡ yt¡1;

where output gap growth is lagged one year. Consider stabilizing this staggered nominal GDP

growth around a target growth rate g¤, that is, with the period loss function

L (¼t+1; yt ¡ yt¡1) = 1

2
(¼t+1 + yt ¡ yt¡1 ¡ g¤)2 : (6.5)

The �rst-order condition is

¼t+2jt + yt+1jt ¡ yt = g¤: (6.6)

20



The staggered nominal GDP growth will ful�ll

~gt+2 = g
¤ + "t+1 + (1 + ®y) ´t+1 + "t+2:

Appendix D shows that this case results in stability. Intuitively, this is because the instrument

it a¤ects both ¼t+2jt and yt+1jt. Clearly, the staggered nominal GDP growth is a far-fetched

construction, though.

Ball shows that ¼t and yt are unstable also for nominal GDP level targeting (see appendix

D for details).

A frequently mentioned rationale for nominal GDP targeting is that the monetary authority

allegedly controls only nominal GDP growth, but not the decomposition of nominal GDP growth

into in�ation and real GDP growth. It is often claimed that little is understood about the

determinants of that decomposition. Given such lack of understanding, it is considered safer for

the monetary authority to achieve a certain nominal GDP growth rate, rather than attempting

to control in�ation and/or output separately. Interestingly, the present model is very di¤erent.

Here, the transmission mechanism of monetary policy is via aggregate demand to in�ation, with

a longer control lag for in�ation. Hence, in this model, the knowledge about the separate e¤ects

of the instrument on aggregate demand and in�ation is substantial, in particular the di¤erent lags

of those e¤ects, and the nominal aggregate demand does not play any role in the transmission

of monetary policy by itself. For further discussion of the role of money in this model, including

a comparison between money growth targeting and in�ation targeting, see Svensson (1997a).

If a money demand equation is added, it is easy to generate the high long-run correlation of

in�ation and money growth, without implying that nominal aggregate demand plays a crucial

role in the transmission mechanism of monetary policy in business cycle frequencies.

Regardless of how robust Ball�s instability result may be, the present model does not provide

any support for nominal GDP targeting.

7 Forward-looking behavior

The model used so far is very simple and in particular does not incorporate any explicit forward-

looking behavior in the Phillips curve and aggregate demand equation (other then a trivial

in�ation-expectations term in the real interest rate). Let me therefore consider a simple forward-

looking alternative.

Roberts (1995) has demonstrated that several di¤erent forward-looking �New Keynesian�
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models of Phillips curves boil down to a Phillips curve of the form

¼t = ¼t+1jt + ®yyt + "t; (7.1)

where ®y > 0.18 Woodford (1996) and McCallum and Nelson (1997) use a forward-looking

aggregate demand curve consistent with intertemporal optimization that, expressed in terms of

the output gap yt, can be written

yt = yt+1jt ¡ ¯r
³
it ¡ ¼t+1jt

´
+ ´t; (7.2)

where ¯r > 0. (Appendix E shows that this assumes that the natural output level is a random

walk.) The disturbances "t and ´t are i.i.d. with zero means.

Furthermore, assume that costs of adjustment, overlapping contracts, or some other mecha-

nism leads to ¼t+1jt in the Phillips curve being replaced by (1¡ ®¼)¼t+1jt + ®¼¼t¡1, and yt+1jt
in the aggregate demand equation being replaced by (1¡ ¯y)yt+1jt + ¯yyt¡1, where 0 < ®¼ < 1
and 0 < ¯y < 1,

¼t = (1¡ ®¼)¼t+1jt + ®¼¼t¡1 + ®yyt + "t
yt = (1¡ ¯y)yt+1jt + ¯yyt¡1 ¡ ¯r

³
it ¡ ¼t+1jt

´
+ ´t:

I would like to maintain the assumption that both in�ation and output are pre-determined

two and one periods, respectively. Bernanke and Woodford (1996) let in�ation be predetermined

one period and model this as the left-hand side of (7.1) depending on expectations one period

earlier of the right-hand side. Here I take expectations two periods earlier of the right-hand side

of (7.1), and one period earlier for the right-hand side of (7.2). Assuming a current disturbance

in each equation, and leading them one period, gives

¼t+1 = (1¡ ®¼)¼t+2jt¡1 + ®¼¼tjt¡1 + ®yyt+1jt¡1 + "t+1 (7.3)

yt+1 = (1¡ ¯y)yt+2jt + ¯yyt ¡ ¯r
³
it+1jt ¡ ¼t+2jt

´
+ ´t+1: (7.4)

Finally, I approximate the term ®¼¼tjt¡1 + ®yyt+1jt¡1 in the Phillips curve by ®¼¼t + ®yyt

(appendix E discusses what is involved in this approximation). The �nal result is then

¼t+1 = (1¡ ®¼)¼t+2jt¡1 + ®¼¼t + ®yyt + "t+1 (7.5)

yt+1 = (1¡ ¯y)yt+2jt + ¯yyt ¡ ¯r(it+1jt ¡ ¼t+2jt) + ´t+1: (7.6)

18 See also Kiley (1996) and Nelson (1997) for recent discussions of Phillips curves.
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Note that (7.6) can also be derived from a utility function that is not additively separable in

consumption over time. The accelerationist Phillips curve (2.1) simply sets ®¼ = 1 (or ¼t+2jt¡1 =

¼t). The simple aggregate demand function (2.2) replaces yt+2jt by zero, and it+1jt ¡ ¼t+2jt by
it ¡ ¼t+1jt.

Solving the model with the intertemporal loss function (2.6) with the period loss function

(2.7) generally requires a numerical solution. Appendix E shows how the model can be written in

state-space form as a linear stochastic regulator problem with forward looking variables, which

problem is solved in Backus and Dri¢ll (1986) and Currie and Levine (1993) and applied in

Svensson (1994). With forward-looking expectations, the optimal solutions under discretion

and commitment are di¤erent. Under the more realistic discretion solution, the forward looking

variables are linear functions of the state variables, as is the optimal solution. The state variables

for (7.5) and (7.6) are ¼t, ¼t+1jt and yt. However, by leading (7.5) one period and taking

expectations at t we get

¼t+2jt = (1¡ ®¼)¼t+3jt + ®¼¼t+1jt + ®yyt+1jt; (7.7)

and we realize that only the state variables ¼t+1jt and yt are relevant for the optimal policy.

Thus the optimal instrument rule under discretion will be of the form

it+1jt = f0 + f¼¼t+1jt + fyyt:

We note the intricate property that the expected future interest rate it+1jt rather than the

current interest rate is the control variable.

7.1 Strict in�ation targeting

Consider the case of strict in�ation targeting (¸ = 0). It is then clear from (2.7) that we would

like to make

¼t+¿ jt = ¼¤; (7.8)

for ¿ = 2; 3; :::; if possible. Using (7.8) in (7.7) results in

yt+1jt = ¡
®¼
®y

³
¼t+1jt ¡ ¼¤

´
: (7.9)

We then realize that

yt+¿ jt = 0 (7.10)
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for ¿ = 2; 3; :::; because of (7.8). Using (7.8)�(7.10) in (7.6) gives

it+1jt = ¼¤ +
®¼
¯r®y

³
¼t+1jt ¡ ¼¤

´
+
¯y
¯r
yt;

which is the optimal instrument rule.

Under these circumstances the equilibrium will be

¼t+1jt = ¼¤ + ®¼"t + ®y´t

¼t+1 = ¼t+1jt + "t+1

yt+1 = ¡ ®¼
®y

³
¼t+1jt ¡ ¼¤

´
+ ´t+1:

In this case, the Phillips curve and aggregate demand are given by

¼t+1 = (1¡ ®¼)¼¤ + ®¼¼t + ®yyt + "t+1 (7.11)

yt+1 = ¯yyt ¡ ¯r(it+1jt ¡ ¼¤) + ´t+1: (7.12)

since ¼t+2jt¡1 = ¼¤ and yt+2jt = 0, rather than (2.1)�(2.2). The term (1 ¡ ®¼)¼¤ in (7.12)
represents a favorable �credibility e¤ect�.

Note that when ®¼ = ¯y = 0, as in (7.1) and (7.2), the optimal instrument rule is trivially

it+1jt = ¼¤, and the equilibrium is

¼t+1jt = ¼¤ + ®y´t

¼t+1 = ¼t+1jt + "t+1

yt+1 = ´t+1:

8 Conclusions

In�ation targeting makes the conditional in�ation forecast (conditional upon the current state

of the economy and the current instrument setting) an intermediate target. Thus, in�ation

targeting can be described as a target rule, a rule that speci�es the intermediate-target variable

and how its target level is determined. Implementation of this target rule then leads to an implicit

endogenous instrument rule. In�ation targeting can be interpreted as a commitment to a target

rule, where the monetary authority has discretion in selecting the appropriate instrument rule

that achieves the target rule.

The present paper has examined in�ation targeting with regard to the appropriate monetary

policy response to di¤erent shocks, the consequences of model uncertainty, the e¤ects of interest
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rate smoothing and stabilization, a comparison with nominal GDP targeting, and the implica-

tions of forward-looking behavior of the private sector. The analysis distinguishes between strict

in�ation targeting, when nothing but in�ation enters the monetary authority�s loss function, and

�exible in�ation targeting, when the monetary authority is also concerned about the stability

of the output gap or the instrument.

Under strict in�ation targeting, the target rule is very simple. The instrument should be

adjusted such that the conditional in�ation forecast for a horizon corresponding to the control

lag always equals the in�ation target. Any shock causing a deviation between the conditional

in�ation forecast and the in�ation target should then be met by an instrument adjustment that

eliminates the deviation.

Under �exible in�ation targeting, the target rule is not quite as simple, but very intuitive.

The instrument should be adjusted such that the conditional in�ation forecast gradually ap-

proaches the long-run in�ation target. For instance, when there is some weight on output sta-

bilization in the monetary authority�s loss function, the two-year conditional in�ation forecast�s

deviation from the long-run in�ation target should be a given proportion of the predetermined

one-year in�ation forecast�s deviation from the same target, when there is some weight on in-

strument stabilization or smoothing, the conditional forecast should also be gradually adjusted

towards the long-run in�ation target. As a consequence, there is a more gradual response to

shocks. The intuition for this result is, of course, that a more gradual adjustment requires less

output and instrument variability.

Interestingly, a gradual adjustment of the conditional in�ation forecast towards the long-run

in�ation target is also the appropriate policy under model uncertainty. Here, the intuition is

that uncertainty about the policy multiplier requires a more muted instrument response, in order

to reduce the part of the variability in in�ation that is caused by the variability of the policy

multiplier.

Thus, both �exible in�ation targeting and model uncertainty lead to a gradual adjustment

of the conditional in�ation forecast toward the long-run in�ation target. This also means that

they may have consequences that are observation equivalent; observations of gradual adjustment

to the long-run in�ation target by actual monetary authorities do not directly reveal the precise

reasons for this. In this context, it is interesting to note that the 0�2 percent per year range

for the Reserve Bank for New Zealand was recently increased to 0�3 percent per year, in the

modi�cation of the Policy Target Agreement in December 1996. In the debate in New Zealand,
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some observers have suggested that the original target range requires an excessive degree of

activism on the part of the Reserve Bank, and that a slightly wider band would be sensible

(Brash (1997)).

The examination of nominal GDP targeting has restated Ball�s (1996) result about resulting

possible instability of in�ation and output growth. In such models, where a great deal is known

about the separate e¤ects of the instrument on in�ation and the output gap, and where these

e¤ects have di¤erent lags, there is no support for nominal GDP targeting. A loss function

where the marginal rate of substitution between in�ation and output growth is constant and

independent of in�ation and output deviations generally seems problematic. The loss function

associated with �exible in�ation targeting, where stability of in�ation and the output gap enter

separately, seems more advantageous and intuitive.

The examination of a model with forward-looking behavior by the private sector showed

how a similar control lag structure as in the simple model can be constructed. It is apparent

that forward-looking behavior makes some of the coe¢cients of the simple model depend on the

parameters in the loss function, which generally, aside from the case of strict in�ation targeting,

requires numerical solutions. For given parameters in the loss function, the coe¢cients are given,

and the results of the simple model apply.

Many in�ation-targeting issues remain and seem suitable for future research. The model

used here is annual, and it remains to apply these ideas in a quarterly, more empirical frame-

work. Rudebusch and Svensson (1997) compare di¤erent in�ation targeting rules and explicit

instrument rules, for instance the Taylor rule, in an empirical quarterly model for the United

States.

In�ation-targeting with imperfectly observed shocks results in a signal-extraction problem

for the monetary authority. Imperfect identi�cation of shocks may be a separate reason for a

gradual adjustment of the conditional in�ation forecast toward the long-run in�ation target.

This remains to be examined.

The real world in�ation-targeting regimes are all very open economies. In an open economy,

there is also a direct exchange rate channel for the transmission of monetary policy, with by

all accounts a shorter lag than the aggregate demand channel emphasized in the present paper.

In an open economy there is also a choice between targeting only in�ation in domestic prices

(the GDP de�ator) or a consumer price index where imports enter. These and other issues in

open-economy in�ation targeting are examined in Svensson (1998).
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A The natural output level and the output gap

Consider the model

¼t+1 = ¼t + ®y(y
d
t ¡ ynt ) + "t+1 (A.1)

ydt+1 = ~̄
yy
d
t + ¯zzt ¡ ¯r(it ¡ ¼t+1jt) + ~́t+1 (A.2)

zt+1 = °zzt + ³t+1 (A.3)

ynt+1 = °ny
n
t + »t+1; (A.4)

where ydt is (log) aggregate demand, y
n
t is the natural output level, zt is a persistent aggregate

demand disturbance, 0 · °z < 1, 0 · °n · 1, and "t, ~́t, ³t and »t are i.i.d. disturbances.

Subtract ynt+1 from (A.2),

ydt+1 ¡ ynt+1 = ~̄
y

³
ydt ¡ ynt

´
+ ¯zzt ¡ ¯r(it ¡ ¼t+1jt) +

³
~̄
yy
n
t ¡ ynt+1

´
+ ~́t+1

= ~̄
y

³
ydt ¡ ynt

´
+ ¯zzt ¡ ¯r(it ¡ ¼t+1jt) +

³
~̄
y ¡ °n

´
ynt + ~́t+1 ¡ »t+1;

and introduce the output gap,

yt = y
d
t ¡ ynt :

Then the model can be written

¼t+1 = ¼t + ®yyt + "t+1

yt+1 = ~̄
yyt + ¯zzt +

³
~̄
y ¡ °n

´
ynt ¡ ¯r(it ¡ ¼t+1jt) + ~́t+1 ¡ »t+1

= ¯yyt + ¯zzt + ¯ny
n
t ¡ ¯r(it ¡ ¼t) + ´t+1;

where

¯y = ~̄
y + ®y¯r (A.5)

¯n = ~̄
y ¡ °n (A.6)

´t+1 = ~́t+1 ¡ »t+1: (A.7)

The one-year and two-year in�ation forecasts are

¼t+1jt = ¼t + ®yyt (A.8)

¼t+2jt(it) = ¼t + ayyt + azzt + any
n
t ¡ ar(it ¡ ¼t); (A.9)
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where

ay = ®y(1 + ¯y) (A.10)

az = ®y¯z (A.11)

an = ®y¯n (A.12)

ar = ®y¯r: (A.13)

With the period loss function (2.7) the optimal policy rule can be written on the forms

it = ¼t + f¼(¸)(¼t ¡ ¼¤) + fy(¸)yt + fzzt + fnynt ; (A.14)

where f¼(¸) and fy(¸) are given by (2.15), fz =
¯z
¯r
and fn =

¯n
¯r
.

In (2.3), xt represents either the persistent demand disturbance zt or the natural rate ynt (or

both, if it is interpreted as a vector and ° as a diagonal matrix).

B In�ation targeting with output gap stabilization and exogenous variables

B.1 One-year control lag for in�ation

In order to derive the �rst-order condition (2.8), it is practical to �rst study the simpler problem

V (¼t) = min
yt

½
1

2

h
(¼t ¡ ¼¤)2 + ¸y2t

i
+ ±EtV (¼t+1)

¾
(B.1)

subject to

¼t+1 = ¼t + ®yyt + "t+1; (B.2)

where the output gap yt is regarded as a control variable and the indirect loss function V (¼t)

remains to be determined.

The indirect loss function V (¼t) will be quadratic,

V (¼t; xt) = k0 +
1

2
k (¼t ¡ ¼¤)2 ; (B.3)

where the coe¢cients k0 and k remain to be determined (I will only need k). The �rst-order

condition is

¸yt + ±EtV¼(¼t+1)®y = ¸yt + ±®yk
³
¼t+1jt ¡ ¼¤

´
= 0;

where I have used (B.3). This can be written

¼t+1jt ¡ ¼¤ = ¡
¸

±®yk
yt: (B.4)
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The decision rule for the output gap ful�lls

yt = ¡ ±®yk

¸

³
¼t+1jt ¡ ¼¤

´
= ¡ ±®yk

¸
(¼t ¡ ¼¤)¡

±®2yk

¸
yt

= ¡ ±®yk

¸+ ±®2yk
(¼t ¡ ¼¤) ;

where I have used (2.4).

Then the equilibrium in�ation forecast ful�lls

¼t+1jt = ¼t + ®yyt

= ¼¤ +
¸

¸+ ±®2yk
(¼t ¡ ¼¤) : (B.5)

In order to identify k; I exploit the envelope theorem for (B.1) and (B.3) and use (B.5),

which gives

V¼(¼t) ´ k (¼t ¡ ¼¤)
´ (¼t ¡ ¼¤) + ±k

³
¼t+1jt ¡ ¼¤

´
=

Ã
1 +

±¸k

¸+ ±®2yk

!
(¼t ¡ ¼¤) :

Identi�cation of the coe¢cient for ¼t ¡ ¼¤ gives

k = 1+
±¸k

¸+ ±®2yk
:

The right-hand side is equal to unity for k = 0 and increases towards 1 + ¸
®2y
for k ! 1. We

realize that there is a unique positive solution that ful�lls k ¸ 1. It can be solved analytically
from

k2 ¡
Ã
1¡ ¸(1¡ ±)

±®2y

!
k ¡ ¸

±®2y
= 0

and is given by

k = k(¸) ´ 1

2

0B@1¡ ¸(1¡ ±)
±®2y

+

vuutÃ1 + ¸(1¡ ±)
±®2y

!2
+
4¸

®2y

1CA ¸ 1: (B.6)

B.2 Two-year control lag for in�ation

After these preliminaries, consider the problem

min
it
Et

1X
¿=0

±¿L (¼t+¿ ; yt+¿ )
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subject to

L (¼t; yt) =
1

2

h
(¼t ¡ ¼¤)2 + ¸y2t

i
¼t+1 = ¼t + ®yyt + "t+1

yt+1 = ¯yyt + ¯xxt ¡ ¯r(it ¡ ¼t) + ´t+1:

We realize that this can be formulated as

V (¼t+1jt) = min
yt+1jt

½
1

2

·³
¼t+1jt ¡ ¼¤

´2
+ ¸y2t+1jt

¸
+ ±EtV (¼t+2jt+1)

¾
subject to

¼t+2jt+1 = ¼t+1 + ®yyt+1

= ¼t+1jt + ®yyt+1jt +
¡
"t+1 + ®y´t+1

¢
;

where yt+1jt is regarded as the control, and where the optimal repo rate can be inferred from

it ¡ ¼t = ¡ 1

¯r
yt+1jt +

¯y
¯r
yt +

¯x
¯r
xt: (B.7)

We realize that this problem is analogous to the problem (B.1) subject to (B.2), where ¼t+1jt,

yt+1jt and "t+1 + ®y´t+1 replace ¼t, yt and "t+1. Thus, in analogy with (B.4), the �rst-order

condition can be written

¼t+2jt ¡ ¼¤ = ¡
¸

±®yk(¸)
yt+1jt; (B.8)

where k(¸) will obey (B.6).

Since by (2.1) we have

yt+1jt =
1

®y

³
¼t+2jt ¡ ¼t+1jt

´
;

we can eliminate yt+1jt from (B.8) and get

¼t+2jt ¡ ¼¤ =
¸

¸+ ±®2yk(¸)

³
¼t+1jt ¡ ¼¤

´
;

that is,

¼t+2jt = ¼¤ + c(¸)
³
¼t+1jt ¡ ¼¤

´
(B.9)

where c(¸) is given by

0 · c(¸) ´ ¸

¸+ ±®2yk(¸)
< 1: (B.10)

Since by (B.8)

yt+1jt = ¡
±®yk(¸)

¸

³
¼t+2jt ¡ ¼¤

´
; (B.11)
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by (B.7) the reaction function will ful�ll

it ¡ ¼t = ¡ 1

¯r
yt+1jt +

¯y
¯r
yt +

¯x
¯r
xt

=
±®yk(¸)

¸¯r

h
¼t ¡ ¼¤ + ®y

³
1 + ¯y

´
yt + ®y¯xxt ¡ ®y¯r (it ¡ ¼t)

i
+
¯y
¯r
yt +

¯x
¯r
xt;

where I have used

¼t+2jt = ¼t + ®y(1 + ¯y)yt + ®y¯xxt ¡ ®y¯r (it ¡ ¼t) :

We getÃ
1 +

±®2yk(¸)

¸

!
(it ¡ ¼t) =

±®yk(¸)

¸¯r

h
¼t ¡ ¼¤ + ®y

³
1 + ¯y

´
yt + ®y¯xxt

i
+
¯y
¯r
yt +

¯x
¯r
xt

=
±®yk(¸)

¸¯r
(¼t ¡ ¼¤) + 1

¸¯r

h
±®2y

³
1 + ¯y

´
k(¸) + ¸¯y

i
yt

+
¯x(¸+ ±®

2
yk(¸))

¸¯r
xt

and

it ¡ ¼t =
±®yk(¸)

¯r

³
¸+ ±®2yk(¸)

´ (¼t ¡ ¼¤) + 1

¯r

³
¸+ ±®2yk(¸)

´ h±®2y ³1 + ¯y´ k(¸) + ¸¯yi yt + ¯x¯r xt
= f¼ (¸) (¼t ¡ ¼¤) + fy (¸) yt + fxxt; (B.12)

where

f¼ (¸) =
1¡ c (¸)
®y¯r

; fy (¸) =
¯y + 1¡ c (¸)

¯r
and fx =

¯x
¯r
:

It is shown in Svensson (1997) that the coe¢cients ¸
±®yk(¸)

in (B.4) and c (¸) in (B.10) are

(i) increasing in ¸ and (ii) decreasing in ®y. The coe¢cient c (¸) increases monotonically from

0 to 1 when ¸ goes from 0 to in�nity.

C Interest rate stabilization and smoothing

Introduce Xt = (¼t; yt; it¡1)0 and vt = ("t; ´t; 0)
0 (the exogenous variable is disregarded, ¯x = 0).

Then the model (2.1)�(2.2) can be written

Xt+1 = AXt +Bit + vt+1;

where

A =

266664
1 ®y 0

¯r ¯y 0

0 0 0

377775 ; B =
266664

0

¡¯r
1

377775 :
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Let for simplicity ¼¤ = 0 (interpret ¼t and it as in�ation and instrument deviations from ¼¤).

Then the period loss function (5.1) can be written

L(Xt; it) = X
0
tQXt + 2X

0
tUit +Ri

2
t ;

where

Q =
1

2

266664
1 + ¹ 0 0

0 ¸ 0

0 0 º

377775 ; U = 1

2

266664
¡¹
0

¡º

377775 ; R = ¹+ º

2
:

This is the standard stochastic linear optimal regulator problem (see, for instance, Chow

(1975) and Sargent (1987)). The optimal instrument rule is of the form

it = fXt,

where the 3£1 row vector f is given by

f = ¡ ¡R+ ±B0V B¢¡1 ¡±B0V A+ U 0¢
and the 3£3 matrix V is the solution to the matrix Riccati equation

V = Q+ Uf + f 0U 0 + f 0Rf + ± (A+Bf)0 V (A+Bf):

D Nominal GDP targeting

D.1 Nominal GDP growth targeting

The roots to (6.4) ful�ll

¹ =
2¡ ®y §

q
®y (®y ¡ 4)
2

:

Consider �rst the case ®y · 4. Then the roots are complex and given by

¹1;2 =
2¡ ®y § j

q
®y (4¡ ®y)
2

(D.1)

where j denotes
p¡1 and

°°°¹1;2°°° =
s
(2¡ ®y)2 + ®y (4¡ ®y)

4
= 1:

The roots are on the unit circle.
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For the case ®y > 4, the roots are real and ful�ll

¹1;2 =
2¡ ®y §

q
(2¡ ®y)2 ¡ 4
2

: (D.2)

Since

¹1¹2 = 1;

we realize that one root is inside the unit circle, the other is outside,

¹1 =
2¡ ®y ¡

q
(2¡ ®y)2 ¡ 4
2

< 1

¹2 =
2¡ ®y +

q
(2¡ ®y)2 ¡ 4
2

> 1:

In both cases the system is unstable.

D.2 Staggered nominal GDP growth targeting

The �rst-order condition (6.6) can be written

yt+1jt = ¡
1

1 + ®y

³
¼t+1jt ¡ g¤

´
+

1

1 + ®y
yt = ¡ 1

1 + ®y
(¼t ¡ g¤) + 1¡ ®y

1 + ®y
yt:

We realize that ¼t and ytwill follow264 ¼t+1 ¡ g¤
yt+1

375 =
264 1 ®y

¡ 1
1+®y

1¡®y
1+®y

375
264 ¼t ¡ g¤

yt

375+
264 "t+1
´t+1

375 :
The eigenvalues are the roots ¹ of the characteristic equation

0 =

¯̄̄̄
¯̄̄ ¹¡ 1 ¡ ®y

1
1+®y

¹¡ 1¡®y
1+®y

¯̄̄̄
¯̄̄ = ¹2 ¡ 2

1 + ®y
¹+

1

1 + ®y
:

The roots are complex and inside the unit circle,

¹1;2 =
1§ jp®y
1 + ®y°°°¹1;2°°° =

p
1 + ®y
1 + ®y

< 1:

Hence the system is stable.
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D.3 Nominal GDP level targeting

For nominal GDP (gap) level targeting, the �rst-order condition is

pt+1jt + yt+1jt = Y ¤:

Rewrite this as

yt+1jt = ¡pt+1jt + Y ¤ = ¡ ¼t+1jt ¡ (pt ¡ Y ¤) = ¡ ¼t ¡ ®yyt ¡ (pt ¡ Y ¤) :

We realize that ¼t, yt and pt follow266664
¼t+1

yt+1

pt+1 ¡ Y ¤

377775 =
266664

1 ®y 0

¡ 1 ¡ ®y ¡ 1
1 ®y 1

377775
266664

¼t

yt

pt ¡ Y ¤

377775+
266664
"t+1

´t+1

"t+1

377775 :
The eigenvalues are the roots ¹ of the characteristic equation

0 =

¯̄̄̄
¯̄̄̄
¯̄
¹¡ 1 ¡ ®y 0

1 ¹+ ®y 1

¡ 1 ¡ ®y ¹¡ 1

¯̄̄̄
¯̄̄̄
¯̄ = ¹ [(¹¡ 1) (¹¡ 1 + ®y) + ®y] :

One root is zero. The other two are the roots of the equation

¹2 ¡ (2¡ ®y)¹+ 1 = 0;

which are the same roots as in (D.1) or (D.2) above. Thus the system is unstable, although the

nominal GDP level is stationary and ful�lls

Yt+1 = pt+1 + yt+1 = Y
¤ + "t+1 + ´t+1:

E Forward-looking behavior

E.1 Output gap and natural output rate

Let ydt and y
n
t denote (log) aggregate demand and the (log) natural output level, respectively.

Let

ynt+1 = °ny
n
t + »t+1;

where 0 · °n · 1. Consider the model

¼t = (1¡ ®¼)¼t+1jt + ®¼¼t¡1 + ®y
³
ydt ¡ ynt

´
+ "t

ydt = (1¡ ¯y)ydt+1jt + ¯yydt¡1 ¡ ¯r
³
it ¡ ¼t+1jt

´
+ ~́t:
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Take expectations one and two periods earlier, respectively, lead the equations one period, and

add a disturbance term,

¼t+1 = (1¡ ®¼)¼t+2jt¡1 + ®¼¼tjt¡1 + ®y
³
ydt+1jt¡1 ¡ ynt+1jt¡1

´
+ "t+1

ydt+1 = (1¡ ¯y)ydt+2jt + ¯yydt ¡ ¯r
³
it+1jt ¡ ¼t+2jt

´
+ ~́t+1:

Express this in terms of the output gap

yt ´ ydt ¡ ynt :

We get

¼t+1 = (1¡ ®¼)¼t+2jt¡1 + ®¼¼tjt¡1 + ®yyt+1jt¡1 + "t+1
yt+1 = (1¡ ¯y)yt+2jt + ¯yyt ¡ ¯r

³
it+1jt ¡ ¼t+2jt

´
+
h
¡ynt+1 + (1¡ ¯y)ynt+2jt + ¯yynt

i
+ ~́t+1

= (1¡ ¯y)yt+2jt + ¯yyt ¡ ¯r
³
it+1jt ¡ ¼t+2jt

´
+ ¯ny

n
t + ~́t+1 ¡ »t+1;

where

¡ynt+1 + (1¡ ¯y)ynt+2jt + ¯yynt = ¯nynt ¡ »t+1:

Hence

¯n = ¡°n + (1¡ ¯y)°2n + ¯y
= (1¡ °n)[¯y(1 + °n)¡ °n]:

We have

¯n = 0 for °n = 1

¯n > 0 for °n < 1 and ¯y >
°n

1 + °n

¯n < 0 for 0 < °n < 1 and ¯y <
°n

1 + °n
:

Let us assume °n = 1, so ¯n = 0:

Approximate ®¼¼tjt¡1 + ®yyt+1jt¡1 by ®¼¼t + ®yyt, in order to get

¼t+1 = (1¡ ®¼)¼t+2jt¡1 + ®¼¼t + ®yyt + "t+1
yt+1 = (1¡ ¯y)yt+2jt + ¯yyt ¡ ¯r

³
it+1jt ¡ ¼t+2jt

´
+ ´t+1;

where ´t+1 = ~́t+1 ¡ »t+1. What error is introduced by this approximation? The error in the
in�ation term is trivial,

®¼
³
¼t ¡ ¼tjt¡1

´
= ®¼"t:
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With regard to the output gap term, we have

®y
³
yt ¡ yt+1jt¡1

´
= ®yyt ¡ ®y

1¡ ¯y
h
ytjt¡1 ¡ ¯yyt¡1 + ¯r

³
itjt¡1 ¡ ¼t+1jt¡1

´i
= ¡ ®y¯y

1¡ ¯y
³
ytjt¡1 ¡ yt¡1

´
¡ ®y¯r
1¡ ¯y

³
itjt¡1 ¡ ¼t+1jt¡1

´
+ ®y´t:

The bene�t of the approximation is to have only ¼t and yt as state variables, rather than

the other more complicated terms in the expression above.

E.2 State-space form

In order to write the model in state-space form, take expectations of (7.5) and (7.6) at t, and

move ¼t+3jt and yt+2jt to the left-hand side:

(1¡ ®¼)¼t+3jt = ¼t+2jt ¡ ®¼¼t+1jt ¡ ®yyt+1jt (E.1)

¯r¼t+2jt + (1¡ ¯y)yt+2jt = yt+1jt ¡ ¯yyt + ¯rit+1jt (E.2)

¯r(1¡ ®¼)¼t+3jt + (1¡ ¯y)yt+2jt = ¡ ¯r®¼¼t+1jt + (1¡ ¯r®y)yt+1jt ¡ ¯yyt + ¯rit+1jt: (E.3)

Here we must have

¯r®y 6= 1. (E.4)

Introduce the predetermined variable

X3t = ¼t+1jt

and the forward-looking variables

x1t = ¼t+2jt

x2t = yt+1jt;

and write the model as

¼t+1 = X3t + "t+1

yt+1 = x2t + ´t+1

X3;t+1 = x1t + ®¼"t+1 + ®y´t+1

(1¡ ®¼)x1;t+1jt = ¡®¼X3t + x1t ¡ ®yx2t
¯r(1¡ ®¼)x1;t+1jt + (1¡ ¯y)x2;t+1jt = ¡¯yyt ¡ ¯r®¼X3t + (1¡ ¯r®y)x2t + ¯rit+1jt:
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This can be written as 264 Xt+1

Cxt+1jt

375 = A
264 Xt
xt

375+But +
264 "X;t+1

0

375 ;
where

264 Xt
xt

375 =

2666666666664

¼t

yt

X3t

x1t

x2t

3777777777775
; C =

264 1¡ ®¼ 0

¯r(1¡ ®¼) 1¡ ¯y

375 ; A =

2666666666664

0 0 1 0 0

0 0 0 0 1

0 0 0 1 0

0 0 ¡®¼ 1 ¡®y
0 ¡¯y ¡¯r®¼ 0 1¡ ¯r®y

3777777777775
;

B =

2666666666664

0

0

0

0

¯r

3777777777775
; ut = it+1jt; "Xt =

266664
"t

´t

®¼"t + ®y´t

377775 :

We must have A22 non-singular; this requires (E.4).

The loss function (2.7) can be written as

Lt =

·
X 0
t x0t

¸
Q

264 Xt
xt

375
where

Q =
1

2

2666666666664

1 0 0 0 0

0 ¸ 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

3777777777775
:

The model is now formulated as a standard linear stochastic regulator problem with rational

expectations and forward-looking variables (see, for instance, Backus and Dri¢ll (1986), Currie

and Levine (1994) and Svensson (1994)). (The problem is slightly generalized, since C need not

be an identity matrix.)

With forward-looking variables, there is a di¤erence between the case of discretion and the

case of commitment to an optimal rule, as discussed in the above references. In the discretion

37



case, the forward-looking variables will be linear functions of the predetermined variables,

xt = GXt,

where the 2£3 matrix G is endogenously determined. The optimal policy rule will be of the

form

ut = fXt:

In the commitment case, the optimal policy also depends on the shadow prices of the forward-

looking variables.

E.3 The solution for a given instrument rule

The relevant state variables are ¼t+1jt and yt. Restrict the instrument to be linear in these state

variables,

it+1jt = f¼¼t+1jt + fyyt:

We realize from (E.1) and (E.3) that both ¼t+2jt and yt+1jt will be linear functions of the

state variables ¼t+1jt and yt,

¼t+2jt = a¼t+1jt + byt

yt+1jt = c¼t+1jt + dyt;

where a, b, c and d remain to be determined. Then we have

¼t+3jt = a¼t+2jt + byt+1jt

= (a2 + bc)¼t+1jt + (a+ d)byt

yt+2jt = c¼t+2jt + dyt+1jt

= (a+ d)c¼t+1 + (bc+ d
2)yt:

Substitution of this into (E.1) and (E.2) leads to

(1¡ ®¼)
h
(a2 + bc)¼t+1jt + (a+ d)byt

i
= a¼t+1jt + byt ¡ ®¼¼t+1jt ¡ ®y

³
c¼t+1jt + dyt

´
¯r

³
a¼t+1jt + byt

´
+ (1¡ ¯y)

h
(a+ d)c¼t+1jt +

³
bc+ d2

´
yt
i
=

c¼t+1jt + dyt ¡ ¯yyt + ¯r
³
f¼¼t+1jt + fyyt

´
:
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Identi�cation of the coe¢cients for ¼t+1jt and yt gives four equations,

(1¡ ®¼)
³
a2 + bc

´
= a¡ ®¼ ¡ ®yc

(1¡ ®¼)(a+ d)b = b¡ ®yd
¯ra+ (1¡ ¯y) (a+ d) c = c+ ¯rf¼

¯rb+ (1¡ ¯y)
³
bc+ d2

´
= d¡ ¯y + ¯rfy;

which can in principle be solved (numerically) for a, b, c and d.

Note that the case a = b = 0 implies the equations

0 = ¡ ®¼ ¡ ®yc
0 = ¡ ®yd

(1¡ ¯y)dc = c+ ¯rf¼

(1¡ ¯y)d2 = d¡ ¯y + ¯rfy;

which implies

c = ¡ ®¼
®y

d = 0

f¼ =
®¼
¯r®y

fy =
¯y
¯r
:

This is the solution above for strict in�ation targeting (¸ = 0).
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