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Abstract

We show how to construct optimal policy projections in Ramses, the Riksbank’s open-

economy medium-sized DSGE model for forecasting and policy analysis. Bayesian estimation

of the parameters of the model indicates that they are relatively invariant to alternative policy

assumptions and supports that the model may be regarded as structural in a stable low inflation

environment. Whether past policy of the Riksbank until 2007:3 (the end of the sample used)

is better explained as following a simple instrument rule or optimal policy under commitment

depends on whether the policy rules have a white-noise policy shock (control error) or not.

Without a shock in the simple instrument rule and the optimal policy rule, optimal policy fits

better; with a shock in both rules, the simple instrument rule fits better. We show and discuss

the differences between policy projections for the estimated instrument rule and for optimal pol-

icy under commitment, under alternative definitions of the output gap, different initial values

of the Lagrange multipliers representing policy in a timeless perspective, and different weights

in the central-bank loss function.
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1. Introduction

We study optimal monetary policy in Ramses, the main model used at Sveriges Riksbank for fore-

casting and policy analysis. Ramses is a small open-economy dynamic stochastic general equilibrium

(DSGE) model estimated with Bayesian techniques. It is described in Adolfson, Laséen, Lindé, and

Villani (ALLV) [3] and [4]. Relative to other estimated small open-economy DSGE models (for

instance, Justiniano and Preston [18]), the international spillover effects are relatively large due

to the inclusion of a worldwide stochastic technology shock. This means that the open-economy

aspects are of particular importance in our setting.

By optimal monetary policy we mean policy that minimizes an intertemporal loss function under

commitment. The intertemporal loss function is a discounted sum of expected future period losses.

We choose a quadratic period loss function that corresponds to flexible inflation targeting and is

the weighted sum of three terms: the squared inflation gap between 4-quarter CPI inflation and

the inflation target, the squared output gap between output and potential output, and the squared

quarterly change in the Riksbank’s instrument rate, the repo rate. We interpret such a loss function

as consistent with flexible inflation targeting and the Riksbank’s monetary-policy objective.1

We assume that Ramses is a structural model whose parameters are invariant to changes in

monetary policy. In order to shed some light on the plausibility of that assumption, we estimate

the model parameters with Bayesian techniques under different assumptions about the conduct of

monetary policy. First, as in ALLV [4], we estimate the model under the assumption that the

Riksbank has followed a simple instrument rule during the inflation-targeting period (starting in

1993:1) up to 2007:3.2 Second, we estimate the model under the assumption that the Riksbank

has minimized an intertemporal loss function under commitment in a time-less perspective during

the inflation-targeting period. In both cases, the steady-state inflation target is assumed to be 2

percent, and most of the parameters that are estimated only affects the dynamics in the model.

The parameters of the model turn out to be invariant to the alternative formulations about the

conduct of monetary policy, which supports our assumption that Ramses can for our purposes be

1 In some simple models, quadratic approximations of the welfare of a representative household results in a similar
period loss function (Woodford [38]). Such approximations of household welfare are very model-dependent and reflect
the particular distortions assumed in any given model. Household welfare is in any case hardly an operational central-
bank objective, although it may be of interest and relevant to examine how household welfare in particular models is
affected by central-bank policy. Such an undertaking is beyond the scope of the present paper, though.

2 The inflation-targeting period is assumed to start 1993:1 (the sample in this paper ends 2007:3). Prior to this
period (1986:1—1992:4), the conduct of policy is assumed to be given by a simple instrument rule. The switch to the
inflation-targeting regime in 1993:1 is assumed to be completely unanticipated but expected to be permanent once it
has occurred.
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treated as a structural model. The estimates of the instrument-rule and loss-function parameters

provide benchmarks for the subsequent policy analysis. Another interesting finding in the empirical

analysis is that whether past policy of the Riksbank until 2007:3 (the end of the sample used) is

better explained as following a simple instrument rule or optimal policy under commitment depends

on whether the simple instrument rule and the optimal policy rule has a white-noise policy shock

(control error) or not. Without a shock in both rules, we find that optimal policy fits better. This

result has been found for Norway by Wolden Bache, Brubakk, and Maih [37]. With a shock in

both rules, there is a clear improvement in the empirical fit of both rules. Furthermore, the simple

instrument rule has a slight empirical advantage relative to optimal policy. Hence, for the particular

sample period in question, with policy shocks the simple instrument rule offers a slightly better

characterization of monetary policy.

We use the estimated model to provide a detailed analysis of how to do optimal policy projec-

tions in a linear-quadratic model with forward-looking variables, extending on previous analysis by

Svensson [30] and Svensson and Tetlow [35]. A key issue for a flexible inflation-targeting central

bank is which measure of output it should try to stabilize. Therefore, we study alternative def-

initions of potential output and the output gap, in order to make an assessment to what extent

the formulation of the output gap in the loss function affects the optimal policy projections. More

precisely, we report results from three alternative concepts of output gaps (−̄), deviations of
actual (log) output () from potential (log) output (̄) in the loss function. One concept of out-

put gap is the trend output gap when potential output is the trend output level, which is growing

stochastically due to the unit-root stochastic technology shock in the model. This trend output

level will in practice closely resemble a trend output level computed with a Hodrick-Prescott (HP)

filter. This measure of the output gap appears to be extensively used in practice and often reported

and discussed in various inflation and monetary policy reports. A second concept is the uncon-

ditional output gap, where potential output is unconditional potential output, which is defined as

the hypothetical output level that would exist if the economy would have had flexible prices and

wages for a long time and would have been subject to a subset of the same shocks as the actual

economy. Unconditional potential output therefore presumes different levels of the predetermined

variables, including the capital stock, from those in the actual economy. A third concept is the

conditional output gap, where potential output is conditional potential output, which is defined

as the hypothetical output level that would arise if prices and wages suddenly become flexible in

the current period and are expected to remain flexible in the future. Conditional potential output
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therefore depends on the existing current predetermined variables, including the current capital

stock.

We also provide alternative methods to compute the initial vector of Lagrange multipliers of the

equations for the forward-looking variables, the multipliers that are inputs in the optimal policy

under commitment in a timeless perspective.

We report and discuss optimal policy projections for Sweden using data up to and including

2007:3. We show projections for the estimated instrument rule and for optimal policy with dif-

ferent output gaps in the loss function, different configurations of the initial Lagrange multipliers

associated with commitment in a timeless perspective, and different weights in the loss function.

Such policy projections provide good and relevant illustrations of the policy tradeoffs policymakers

face. In a companion paper, Adolfson, Laséen, Lindé, and Svensson [2], we study how the policy

assumption affects the propagation of shocks and the variability of some key macro variables.

The paper is organized as follows: Section 2 presents Ramses in more general modeling terms.

Section 3 discusses the data and priors used in the estimation and presents estimation results for

the various specifications of the model and policy. Section 4 discusses methods to construct optimal

policy projections and presents and discusses the alternative projections for a policymaker in 2006:4

and 2007:4. Finally, section 6 presents a summary and some conclusions. Appendices A-D contain a

detailed specification of Ramses and many other technical details. In particular, numerical demands

because of the size of Ramses requires some combination of the Klein [21] algorithm and the AIM

algorithm of Anderson and Moore [10] and [11].

2. The model

Ramses is a linear model with forward-looking variables. It can be written in the following state-

space form, ∙
+1

+1|

¸
= 

∙




¸
+ +

∙


0

¸
+1 (2.1)

Here,  is an -vector of predetermined variables in period  (where the period is a quarter);

 is an -vector of forward-looking variables;  is an -vector of instruments (the forward-

looking variables and the instruments are the nonpredetermined variables);3  is an -vector of

i.i.d. shocks with mean zero and covariance matrix  ; , , and , and  are matrices of the

appropriate dimension; and, for any variable , + | denotes E+ , the rational expectation of

3 A variable is predetermined if its one-period-ahead prediction error is an exogenous stochastic process (Klein
[21]). For (2.1), the one-period-ahead prediction error of the predetermined variables is the stochastic vector +1.
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+ conditional on information available in period . The variables can be measured as differences

from steady-state values, in which case their unconditional means are zero. Alternatively, one of

the elements of  can be unity, so as to allow the variables to have nonzero means. The elements

of the matrices , , , and  are estimated with Bayesian methods and are considered fixed and

known for the policy simulations. Then the conditions for certainty equivalence are satisfied. Thus,

we abstract from any consideration of model uncertainty in the formulation of optimal policy.4

Appendix A provides details on Ramses, including the elements of the vectors , , , and .

The upper block of (2.1) provides  equations that determine the -vector +1 in period

+ 1 for given , ,  and +1

+1 = 11 +12 +1 ++1 (2.2)

where  and  are partitioned conformably with  and  as

 ≡
∙
11 12
21 22

¸
  =

∙
1
2

¸
 (2.3)

The lower block provides  equations that determine the -vector  in period  for given +1|,

, and 

 = −122 (+1| −21 −2) (2.4)

We hence assume that the  ×  submatrix 22 is nonsingular.
5

Let  be an  -vector of target variables, measured as the difference from an  -vector 
∗

of target levels. This is not restrictive, as long as we keep the target levels time-invariant. If we

would like to examine the consequences of different target levels, we can instead interpret  as the

absolute level of the target levels and replace  by  −  ∗ everywhere below. We assume that

the target variables can be written as a linear function of the predetermined, forward-looking, and

instrument variables,

 = 

⎡⎣ 




⎤⎦ ≡ [  ]

⎡⎣ 




⎤⎦  (2.5)

where  is an  × ( +  + ) matrix and partitioned conformably with , , and . Let

the intertemporal loss function in period  be

E

∞X
=0

+  (2.6)

4 Onatski and Williams [23] provide a thorough discussion of model uncertainty. Svensson and Williams [33] and
[34] show how to compute optimal policies for Markov Jump-Linear-Quadratic systems, which provide a quite flexible
way to model most kinds of relevant model uncertainty for monetary policy.

5 Without loss of generality, we assume that the shocks  only enter in the upper block of (2.1), since any shocks
in the lower block of (2.1) can be redefined as additional predetermined variables and introduced in the upper block.
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where 0    1 is a discount factor,  is the period loss given by

 ≡  0 (2.7)

and  is a symmetric positive semidefinite matrix.

We consider the following target variables: the model-consistent 4-quarter CPI inflation rate,

 − −4, where 

 denotes the log of CPI; a measure of the output gap,  − ̄, where  denotes

output and ̄ denotes potential output; and the first difference of the instrument rate,  − −1,

where  denotes the Riksbank’s instrument rate, the repo rate. The period loss is

 = (

 − −4 − ̄)2 + (−̄)2 + ∆( − −1)2 (2.8)

where ̄ is the 2% inflation target and  and ∆ are nonnegative weights on output-gap sta-

bilization and instrument-rate smoothing, respectively. That is, the vector of target variables is

 ≡ ( − −4 − ̄ −̄  − −1)0, and the matrix  is the matrix with diagonal (1  ∆)
0.

We use 4-quarter inflation as a target variable rather than quarterly inflation since the Riksbank

and other inflation-targeting central banks normally specify their inflation target as a 12-month

rate.6

We report results from three alternative concepts of output gaps (−̄) in the loss function.
One concept of output gap is the trend output gap when potential output (̄) is the trend output

level, which is growing stochastically due to the unit-root stochastic technology shock in the model.

This trend output level will in practice closely resemble a trend output level computed with a an HP

filter. A second concept is the unconditional output gap, where potential output is unconditional

potential output, which is defined as the hypothetical output level that would exist if the economy

would have had flexible prices and wages for a long time and would have been subject to the same

shocks as the actual economy except mark-up shocks and shocks to taxes which are held constant

at their steady-state levels. Unconditional potential output therefore presumes different levels of

the predetermined variables, including the capital stock, from those in the actual economy. A

third concept is the conditional output gap, where potential output is conditional potential output,

6 Furthermore, the inflation target variable is assumed to be the model-consistent CPI inflation. The reason
is that this measure more accurately captures the true import content in the consumption basket. In the model,
total consumption is a CES function of imported and domestic goods, which yields the following (log-linearized) CPI
inflation



 − 


−4 = (1− ) (





)
−(1−)( − 


−4) + (





)
−(1−)(

 − 

−4) (2.9)

where  is the share of expenditures in the CPI spent on imported goods, 

 the (log) domestic price level and



 the (log) price of imported goods that the consumer has to pay. () and () are the steady-state
relative prices which adjust the expenditure shares such that the true import content of CPI inflation becomes lower
(decreasing from 35% to 28%). However, qualitatively this does not affect the subsequent analysis very much.
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which is defined as the hypothetical output level that would arise if prices and wages suddenly

become flexible in the current period and are expected to remain flexible in the future. Conditional

potential output therefore depends on the existing current predetermined variables, including the

current capital stock. Appendix C discusses alternative concepts of output gaps and potential

output in some detail.7

3. Estimation

3.1. Data, prior distributions, and calibrated parameters

We estimate the model using a Bayesian approach by placing a prior distribution on the structural

parameters. We use quarterly data for the period 1980:1-2007:3. All data are from Statistics

Sweden, except the repo rate which is from the Riksbank. The nominal wage is deflated by the

GDP deflator. Foreign inflation, output, and interest rate are weighted together across Sweden’s

20 largest trading partners in 1991 using weights from the IMF.8

As in ALLV [4], we include the following  = 15 variables among the observable variables:

GDP deflator inflation ( ), real wage (), consumption (), investment (), real exchange

rate (̃), short interest rate (), hours worked (), GDP (), exports (̃), imports (̃), CPI

inflation (
cpi
 ), investment-deflator inflation (

def
 ), foreign output ( ∗ ), foreign inflation (∗ ),

and foreign interest rate (∗ ). As in Altig, Christiano, Eichenbaum, and Lindé [7], the unit-root

technology shock induces a common stochastic trend in the real variables of the model. To make

these variables stationary we use first differences and derive the state-space representation for the

following vector of observed variables,

 ≡ ( ∆ ln()∆ ln∆ ln  b̃  ̂ 

∆ ln∆ ln ̃∆ ln ̃ 
cpi
  

def
 ∆ ln ∗  ∗  ∗ )0

(3.1)

The growth rates are computed as quarterly log-differences, while the inflation and interest-rate

series are measured as annualized quarterly rates. It should be noted that the stationary variablesb̃ and ̂ are measured as deviations around the mean and the HP-filtered trend, that is, b̃ ≡
7 As reported in ALLV [4], the output gap resulting from trend output seems to more closely correspond to the

measure of resource utilization that the Riksbank has been responding to historically rather than the unconditional
output gap. Del Negro, Schorfheide, Smets, and Wouters [14] report similar results for the US.

8 In the data, the ratios of import and export to output are increasing from about 025 to 040 and from 021
to 050, respectively, during the sample period. In the model, import and export are assumed to grow at the same
rate as output. We have removed the excess trend in import and export in the data to make the export and import
shares stationary. For all other variables we use the actual series (seasonally adjusted with the X12-method, except
the variables in the GDP identity which were seasonally adjusted by Statistics Sweden).
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(̃ − ̃) ̃ and ̂ ≡
¡
 −HP



¢
HP

 , respectively.9 We choose to work with per-capita hours

worked, rather than total hours worked, because this is the object that appears in most general-

equilibrium business cycle models. Finally, all real variables are measured in per-capita units.

In comparison with prior literature, such as Justiniano and Preston [17] and Lubik and Schorfheide

[20], we have chosen to work with a large number of observable variables in order to facilitate iden-

tification of the parameters and shocks we estimate. For instance, despite the fact that the foreign

variables are exogenous, we include them as observable variables as they enable identification of

the asymmetric technology shock and are informative about the parameters governing the trans-

mission of foreign impulses to the domestic economy. We estimate 13 structural shocks, of which

8 follow AR(1) processes and 5 are assumed to be i.i.d. In addition to these, there are 8 shocks

provided by the exogenous (pre-estimated) fiscal and foreign VARs, whose parameters are kept

fixed throughout the estimation of the model (uninformative priors are used for these stochastic

processes). The shocks enter in such a way that there is no stochastic singularity in the likelihood

function.10 To compute the likelihood function, the reduced-form solution of the model is trans-

formed into a state-space representation that maps the unobserved state variables into the observed

data. We use the Kalman filter to calculate the likelihood function of the observed variables. The

period 1980:1—1985:4 is used to form a prior on the unobserved state variables in 1985:4, and the

period 1986:1-2007:3 is used for inference. The posterior mode and Hessian matrix evaluated at

the mode is computed by standard numerical optimization routines (see Smets and Wouters [26]

and the references there for details).

9 The reason why we use a smooth HP-filtered trend for hours per capita, as opposed to a constant mean, is that
there is a large and very persistent reduction in hours worked per capita during the recession in the beginning of the
1990s. Neglecting taking this reduction into account implies that the forecasting performance for hours per capita in
the model deteriorates significantly, as documented in the forecasting exercises in ALLV [4]. Rather than imposing a
discrete shift in hours in a specific time period, we therefore decided to remove a smooth HP trend from the variable.
This choice is not particularly important for the parameter estimates, but has some impact on the 2-sided filtered
estimates of the unobserved states of the economy.
10 See ALLV [4] for details.
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Table 3.1: Prior and posterior distributions

Parameter Prior distribution Posterior distribution

Policy rule Commitment Loss params.

type mean std.d. mode std.d. mode std.d. mode std.d.

/df (Hess.) (Hess.) (Hess.)

Calvo wages  beta 0.750 0.050 0.719 0.045 0.719 0.042

Calvo domestic prices  beta 0.750 0.050 0.712 0.039 0.737 0.043

Calvo import cons. prices  beta 0.750 0.050 0.868 0.018 0.859 0.016

Calvo import inv. prices  beta 0.750 0.050 0.933 0.010 0.929 0.011

Calvo export prices  beta 0.750 0.050 0.898 0.019 0.889 0.025

Indexation wages  beta 0.500 0.150 0.445 0.124 0.422 0.115

Indexation prices  beta 0.500 0.150 0.180 0.051 0.173 0.050

Markup domestic  truncnormal 1.200 0.050 1.192 0.049 1.176 0.050

Markup imported cons.  truncnormal 1.200 0.050 1.020 0.028 1.021 0.029

Markup.imported invest.  truncnormal 1.200 0.050 1.137 0.051 1.154 0.049

Investment adj. cost ̃00 normal 7.694 1.500 7.951 1.295 7.684 1.261

Habit formation  beta 0.650 0.100 0.626 0.044 0.728 0.035

Subst. elasticity invest.  invgamma 1.500 4.0 1.239 0.031 1.238 0.030

Subst. elasticity foreign  invgamma 1.500 4.0 1.577 0.204 1.794 0.318

Risk premium ̃ invgamma 0.010 2.0 0.038 0.026 0.144 0.068

UIP modification ̃ beta 0.500 0.15 0.493 0.067 0.488 0.029

Unit root tech. shock 
beta 0.750 0.100 0.790 0.065 0.765 0.072

Stationary tech. shock  beta 0.750 0.100 0.966 0.006 0.968 0.005

Invest. spec. tech shock Υ beta 0.750 0.100 0.750 0.077 0.719 0.067

Asymmetric tech. shock 
̃

beta 0.750 0.100 0.852 0.059 0.885 0.041

Consumption pref. shock 
beta 0.750 0.100 0.919 0.034 0.881 0.038

Labour supply shock 
beta 0.750 0.100 0.382 0.082 0.282 0.064

Risk premium shock ̃∗ beta 0.750 0.100 0.722 0.052 0.736 0.058

Unit root tech. shock  invgamma 0.200 2.0 0.127 0.025 0.201 0.039

Stationary tech. shock  invgamma 0.700 2.0 0.457 0.051 0.516 0.054

Invest. spec. tech. shock Υ invgamma 0.200 2.0 0.441 0.069 0.470 0.065

Asymmetric tech. shock ̃∗ invgamma 0.400 2.0 0.199 0.030 0.203 0.031

Consumption pref. shock  invgamma 0.200 2.0 0.177 0.035 0.192 0.031

Labour supply shock  invgamma 1.000 2.0 0.470 0.051 0.511 0.053

Risk premium shock 
̃

invgamma 0.050 2.0 0.454 0.157 0.519 0.067

Domestic markup shock  invgamma 1.000 2.0 0.656 0.064 0.667 0.068

Imp. cons. markup shock 
invgamma 1.000 2.0 0.838 0.081 0.841 0.084

Imp. invest. markup shock 
invgamma 1.000 2.0 1.604 0.159 1.661 0.169

Export markup shock  invgamma 1.000 2.0 0.753 0.115 0.695 0.122

Interest rate smoothing 1 beta 0.800 0.050 0.912 0.019 0.900 0.023

Inflation response 1 truncnormal 1.700 0.100 1.676 0.100 1.687 0.100

Diff. infl response ∆1 normal 0.300 0.100 0.210 0.052 0.208 0.053

Real exch. rate response 1 normal 0.000 0.050 −0.042 0.032 −0.053 0.036

Output response 1 normal 0.125 0.050 0.100 0.042 0.082 0.043

Diff. output response ∆1 normal 0.063 0.050 0.125 0.043 0.133 0.042

Monetary policy shock 1 invgamma 0.150 2.0 0.465 0.108 0.647 0.198

Inflation target shock ̄1 invgamma 0.050 2.0 0.372 0.061 0.360 0.059

Interest rate smoothing 2 2 beta 0.800 0.050 0.882 0.019

Inflation response 2 2 truncnormal 1.700 0.100 1.697 0.097

Diff. infl response 2 ∆2 normal 0.300 0.100 0.132 0.024

Real exch. rate response 2 2 normal 0.000 0.050 −0.058 0.029

Output response 2 2 normal 0.125 0.050 0.081 0.040

Diff. output response 2 ∆2 normal 0.063 0.050 0.100 0.012

Monetary policy shock 2 2 invgamma 0.150 2.0 0.135 0.029

Inflation target shock 2 ̄2 invgamma 0.050 2.0 0.081 0.037

Output stabilization  truncnormal 0.5 100.0 1.091 0.526 1.102 0.224

Interest rate smoothing ∆ truncnormal 0.2 100.0 0.476 0.191 0.369 0.061

Log marg likelihood laplace −2631.56 −2654.45

8



The parameters we choose to estimate pertain mostly to the nominal and real frictions in

the model and the exogenous shock processes. Table 3.1 shows the assumptions for the prior

distribution of the estimated parameters.11 The prior distributions for the estimated parameters

are in most cases identical to those assumed in ALLV [4], with the exception of the priors for the

persistence coefficients of the exogenous shocks which are all centered around 075 instead of 085

in an attempt to reduce the amount of persistence stemming from the exogenous shocks in the

model. For the model with a simple instrument rule, we choose identical priors for the parameters

in the instrument rule before and after the adoption of an inflation target in 1993:1. For the model

with optimal policy during the inflation-targeting regime, we use very uninformative priors for the

loss-function parameters ( and ∆), as indicated by the high standard deviations. As mentioned

in the introduction, the switch from the simple instrument rule to the inflation-targeting regime in

1993:1 is modelled as unanticipated and expected to last forever once it has occurred.

3.2. Estimation results

In table 3.1, we report the prior and estimated posterior distributions. Three posterior distribu-

tions are reported. The first, labeled “Policy rule,” is under the assumption that the Riksbank

has followed a simple instrument rule, including an exogenous white-noise policy shock, during

the inflation-targeting period (see equation B.10). The estimated instrument-rule parameters are

reported. The second, labeled “Commitment,” is under the assumption that the Riksbank has

minimized a quadratic loss function under commitment during the inflation-targeting period, with

the output gap in the loss function being the trend output gap. Then the optimal policy rule does

not include a policy shock. The estimated loss-function parameters are reported at the bottom of

table 3.1.

There are two important facts to note in these first two posterior distributions. First, it is clear

that the version of the model where policy is characterized with the simple instrument rule with an

exogenous policy shock is a better characterization of how the Riksbank has conducted monetary

policy during the inflation-targeting period. The difference between log marginal likelihoods is

11 We choose to calibrate those parameters that we think are weakly identified by the variables that we include in
the vector of observed data. These parameters are mostly related to the steady-state values of the observed variables
(that is, the great ratios:  ,  , and  ). The parameters that we calibrate are set as follows: the money
growth  = 1010445; the discount factor  = 0999999; the steady state growth rate of productivity  = 1005455;

the depreciation rate ̃ = 0025; the capital share in production  = 025; the share of imports in consumption and
investment  = 035 and  = 050, respectively; the share of wage bill financed by loans  = 1; the labour supply
elasticity  = 1; the wage markup  = 130; inflation target persistence  = 0975; the steady-state tax rates on
labour income and consumption  = 030 and  = 024, respectively; government expenditures-output ratio 030;
the subsitution elasticity between consumption goods  = 5; and the capital utilization parameter  = 10

6 so that
there is no variable capital utilization.
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almost 23 in favor of the model with the instrument rule compared to the model with optimal

policy. In terms of Bayesian posterior odds, this is overwhelming evidence against the loss-function

characterization of the Riksbank’s past policy behavior. However, this result crucially depends on

the assumption that the simple instrument rule includes a policy shock (control error) and the

optimal policy rule does not. If we follow Wolden Bache, Brubakk, and Maih [37] and treat the

two cases symmetrically by not including a policy shock in the simple rule during the inflation

targeting period, that is, we impose 2 = 0, then the log marginal likelihood falls to −26975,
about 43 worse than for the optimal policy, suggesting that optimal policy fits the data better.

Alternatively, we can treat the two cases symmetrically by including a shock in the optimal policy

rule. This improves the fit of optimal policy, but the log marginal likelihood (−26376) is then
still lower than the log marginal likelihood for the simple instrument rule with a policy shock in

table 3.1. Hence, for the particular sample period in question, with policy shocks in both rules the

simple instrument rule offers a slightly better characterization of monetary policy. Compared to

optimal policy the Bayesian posterior odds speak clearly in favor of the simple instrument rule, but

in practice we have seen that log marginal likelihood differences (Laplace approximation) does not

generate very large discrepancies in terms of the forecasting accuracy. Thus, the improvement in

fit relative to optimal policy is moderate.

Since the optimal policy rule may respond to all predetermined variable, it may appear that the

optimal policy rule would be quite flexible and relatively easy to fit to the data compared to the

simple instrument rule. However, all the response coefficients are subject to restrictions such that

in the end only two additional parameters,  and ∆, are estimated, compared to the seven or

eight parameters (depending on whether 2 is set to zero or not) for the simple instrument rule.

From this point of view, it should be much easier to fit a simple instrument rule, with or without

a policy shock, than an optimal policy rule.

Second, and perhaps even more interesting from our perspective, is that the non-policy parame-

ters of the model are fairly invariant to the specification of how monetary policy has been conducted

during the inflation-targeting period. This is also true for the non-policy parameters for the model

with the simple instrument rule without the policy shock, whereas for that case the policy response

parameters increase (not reported in table 3). Thus, the estimation results are not particularly

sensitive to the policy specification. Hence, the common argument that likelihood-based methods

in econometrics are sensitive to specification of policy does not apply here. We interpret this result

as support for our assumption that the non-policy parameters can be considered structural and
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unaffected by the alternative policy assumptions we will consider. As can be seen from table 3.1,

the largest changes in parameters pertain to the degree of habit persistence in the model, where

the estimated value increase from 063 in the simple rule model to 073 in the commitment version.

Another parameter that is relatively more affected is the sensitivity of the risk-premium with re-

spect to net foreign assets, which increases from 003 to about 014. Turning to the shock process

parameters, we see that labor supply shocks are somewhat more persistent under the simple rule

() , which is compensated with a somewhat lower standard deviation of the unit-root technology

shocks (). One way to assess the quantitative importance of the parameters is to calibrate all

parameters except the coefficients in the loss function to the estimates obtained in the simple rule

specification of the model, and then reestimate the coefficients in the loss function conditional on

these parameters. If the loss function parameters are similar, we know that differences are not

quantitatively unimportant. The results of this experiment is reported in the last column in table

3.1 labeled “Loss params”, and, as we hoped and anticipated, the resulting loss function parame-

ters are very similar to the ones obtained when estimating all parameters jointly. Therefore, we

conclude that the parameter changes are very modest.12

In the subsequent analysis we use the posterior-mode estimates of the non-policy parameters for

the model with the simple instrument rule. In most cases, the model with the simple instrument

rule is also used to generate the (partly) unobserved state variables. For consistency reasons, the

associated estimated loss function parameters  = 1102 and ∆ = 0369 are therefore used as

benchmarks in some of the optimal policy projections below.

4. Optimal policy projections

This section first explains the concept of optimal policy projections together with the information

and data used and then presents the results for the optimal policy projections in 2007:4, using data

up to and including 2007:3.

12 Although not reported in table 3.1, we have also estimated the model under the assumption of optimization
under discretion. Using somewhat more restrictive priors for  and ∆ (shrinking the prior standard deviation to 2
instead of 100), we then obtain a posterior mode of 256 and 102 for  and ∆ with associated standard deviations
155 and 080. The log marginal likelihood equals −26457, thus providing a better fit than for optimal policy under
commitment, but worse fit than the simple instrument rule with a policy shock. Using the uninformative priors for 
and ∆ in table 3.1, we found the posterior mode parameters to be implausibly high (about 128 and 57, respectively),
but the log marginal likelihood was only marginally higher (−26435) compared to the case with tighter priors. We
therefore concluded that the data are less informative about  and ∆ in the discretionary case, which is reflected
in higher standard deviations (for the tighter priors) than in the commitment case, see table 3.1. Most important for
the analysis in the paper, however, is that the posterior mode of the non-policy parameters under discretion is very
similar to those reported in table 3.1.
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4.1. Information and data

First we clarify the information assumptions underlying the conditional expectation E used in the

loss function (2.6). Let E[·] ≡ E[·|I] where I denotes the information set in period . In the

standard and simple case when all variables are observed, we can specify

I ≡ { ; −1−1 −1 −1; −2−2 −2 −1; }

This can be interpreted as information in the beginning of period . We can understand this

as the agents of the model (the central bank, the private sector, the fiscal authority, and the

rest of the world) entering the beginning of period  with the knowledge of past realizations of

shocks, variables, and instruments, −1−1 −1 −1 −2−2 −2 −2,...13 Then, at

the beginning of period , the shock  is realized and observed, and  is determined by (2.2) and

observed. We also assume that the agents know the model, including the matrices , , , , ,

and and the scalar , so either  or  is sufficient for inferring the other from (2.2), given that

previous realizations are known. Then the central bank determines, announces, and implements

its instrument setting, , which is hence observed by the other agents. After this, the expectations

+1| are formed, and  is determined by (2.4).14 In equilibrium, both  and  will be a function

of  and previous realizations of , consistent with this specification of the information set.

However, Ramses makes more elaborate and realistic information assumptions. The variables

 and  include (serially correlated) shocks and some other unobservable variables for which no

data exists. Furthermore, the elements of , , and  are in many cases quarterly averages, which

have not been realized until the end of quarter . To model this, let the -vector of observable

variables, , for which data exists, satisfy

 = ̄

⎡⎣ 




⎤⎦+ 

where ̄ is a given matrix and  is an -vector of i.i.d. period- measurement errors with the

distribution (0Σ). Then the information set in the beginning of period (quarter) , just after

the instrument setting for quarter  has been announced, is instead specified as

I ≡ { −1 −2 }

More precisely, for the monetary-policy decision at the beginning of quarter , Bayesian methods

and data on − for  = 1   are used to estimate the parameters forming the matrices , ,
13 Only the linear combination  of the shocks  matters, not the individal shocks .
14 More precisely, the expectations +1| and  are simultaneously determined.
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, and  as well as the realizations of − , − , − , and − for  ≥ 1, denoted − |,

− |, − |, and − | for  ≥ 1 (we assume that − is observed, so − = − | for  ≥ 0).15

We also specify the estimate of , denoted |, as

| = 11−1| +12−1| +1−1| (4.1)

where the estimated shocks | = 0 since  is not in the information set I ( is assumed to be

observed at the end of period  and is in the information set I+1).16

In practice, the parameters of Ramses are not necessarily reestimated each quarter, only the

state of the economy, +1− |, − |, − |, − |, and − | for  ≥ 1. For our purposes,

we do not date the estimate of the matrices , , , and . Furthermore, with regard to

projections in period , we regard these matrices as certain and known. Then we can rely on

certainty equivalence–under which conditional means of the relevant variables are sufficient for

determining the optimal policy–and compute the optimal projections accordingly.17

4.2. The projection model and optimal projections

Let  ≡ {+}∞=0 denote a projection in period  for any variable , a mean forecast conditional
on information in period . The projection model for the projections (    ) in period  is∙

++1

++1

¸
= 

∙
+

+

¸
++ (4.2)

+ = 

⎡⎣ +

+
+

⎤⎦ (4.3)

for  ≥ 0, where
 = | (4.4)

where | is given by (4.1). Thus, we let “ ” and “|” in subindices refer to projections and
estimates in the beginning of period , respectively. The feasible set of projections for given | is

15 The estimated shocks − | for  ≥ 1 satisfy −| = −| −11−−1| +12−−1| +1−−1
16 Thus, the estimated/expected shock +| and + | for  ≥ 0 are zero, whereas the estimated shocks

− | and − | for  ≥ 1 are given by −| = − | − 11−−1| − 12−−1| − 1−−1 and − | =
− − ̄(0

− | 
0
− | − )

0, and are normally nonzero.
17 It should be noted that the setup here differs compared to what was used in, for example, ALLV [4] and [5],

which examine forecasts using an instrument rule. There uncertainty about both parameters, the current state of the
economy, the sequence of future shocks as well as the measurement errors were allowed for (see Adolfson, Lindé and
Villani [6] for a description). However, this uncertainty is additive so certainty equivalence holds. Also our timing
convention for the projections differs. In ALLV [4], [5], and [6] it is assumed that the projections are carried out at
the end of period  (using the estimated instrument rule). That is,  is observed and considered to be known at the
time of the projection in ALLV [4], [5], and [6].
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the set of projections that satisfy (4.2)-(4.4). Thus, the projections in period  are conditional on

the estimates of the matrices , , and ; the estimates of the past realizations of the unobserved

predetermined and forward-looking variables, shocks, and measurement errors and the observed

instrument settings, − |, − |, − |, − |, and − for  ≥ 1; and the estimate of the

current realization of the predetermined variables | in (4.1). These estimates are conditional on

the information set I consisting of information available up to the beginning of period .

The policy problem in period  is to determine the optimal projection in period , denoted

(̌ ̌ ̌ ̌ ). The optimal projection is the projection that minimizes the intertemporal loss

function,
∞X
=0

+ (4.5)

where the period loss, +, is specified as

+ = +
0+ (4.6)

The minimization is subject to the projection being in the feasible set of projections for given |.18

When the policy problem is formulated in terms of projections, we can allow 0   ≤ 1, since
the above infinite sum will normally converge also for  = 1. The optimization is done under

commitment in a timeless perspective (Woodford [38]). The optimization results in a set of first-

order conditions, which combined with the model equations, (2.1), yields a system of difference

equations (see Söderlind [28] and Svensson [31]). The system of difference equations can be solved

with several alternative algorithms, for instance those developed by Klein [21] and Sims [25] (see

Svensson [30] and [31] for details of the derivation and the application of the Klein algorithm). The

system of difference equations can also be solved with the AIM algorithm of Anderson and Moore

[10] and [11] (see Anderson [8] for a recent formulation). Whereas the Klein algorithm is easy to

apply directly to the system of difference equations and the AIM algorithm requires some rewriting

of the difference equations, the AIM algorithm appears to be significantly faster for large systems

(see Anderson [9] for a comparison between AIM and other algorithms). Appendix D discusses the

relation between the Klein and AIM algorithms and shows how the system of difference equations

can be rewritten to fit the AIM algorithm.

Under the assumption of optimization under commitment in a timeless perspective, one way to

18 Policy projections when monetary policy is characterized by a simple instrument rule are described in appendix B.
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describe the optimal projection is by the following difference equations,∙
̌+
̌+

¸
= 

∙
̌+

Ξ+−1

¸
 (4.7)∙

̌++1

Ξ+

¸
= 

∙
̌+

Ξ+−1

¸
 (4.8)

for  ≥ 0, where ̌ = |. The Klein algorithm returns the matrices  and  . These matrices

depend on , , , ,  , and , but they are independent of . The independence of 

demonstrates the certainty equivalence of the projections. The -vector Ξ+ consists of the

Lagrange multipliers of the lower block of (4.2), the block determining the projection of the forward-

looking variables. The initial value for Ξ−1 is discussed below.

The optimal projection can also be described as⎡⎢⎢⎣
̌++1

Ξ+
̌++1
̌++1

⎤⎥⎥⎦ = ̄

⎡⎢⎢⎣
̌+

Ξ+−1
̌+
̌+

⎤⎥⎥⎦  (4.9)

for  ≥ 0, where

̌ = |

Ξ−1 = Ξ−1−1∙
̌
̌

¸
=

∙
̄·
̄·

¸⎡⎢⎢⎣
̌−1−1
Ξ−2−1
̌−1−1
̌−1−1

⎤⎥⎥⎦+ ∙ Φ·Φ·
¸⎡⎢⎢⎣

| − ̌−1
0

0

0

⎤⎥⎥⎦ 
where the ̄ and Φ are matrices returned by the AIM algorithm and partitioned conformably with

Ξ−1  and .
19 Here, | − ̌−1 denotes the difference between the estimate |, which

is based on the information set I, and the projection ̌−1, which is based on the information

set I−1. The new information in I relative to I−1 is  and −1; only the latter matters for the

difference between | and ̌−1. Equivalently, ̌, Ξ−1, ̌, and ̌ can be written as⎡⎢⎢⎣
̌

Ξ−1
̌
̌

⎤⎥⎥⎦ = ̄

⎡⎢⎢⎣
̌−1−1
Ξ−2−1
̌−1−1
̌−1−1

⎤⎥⎥⎦+
⎡⎢⎢⎣



0

Φ
Φ

⎤⎥⎥⎦ £ | − ̌−1
¤


The relations between the matrices matrices  ,  , ̄, and Φ are discussed in appendix D.20

19 The notation Φ· refers to the larger sub matrix [Φ ΦΞ Φ Φ]; Φ is the leftmost submatrix of this
submatrix
20 As discussed in appendix D, for the AIM algorithm, all nonpredetermined variables as well as lagged one-period-

ahead expectations of the nonpredetermined variables need for technical reasons to be included when the AIM form
of the solution is used. In the above matrices and vectors, all those variables, including the elements corresponding to
the Lagrange multipliers of the equation block (2.2) (the upper block of 4.2)), have for simplicity not been explicitly
entered.

15



4.3. Initial Lagrange multipliers

As discussed in Svensson [30, Appendix A],21 the value of the initial Lagrange multiplier, Ξ−1, is

zero, if there is commitment from scratch in period , that is, if any previous commitment is disre-

garded. This reflects a time-consistency problem when there is reoptimization and recommitment

in later periods, as is inherently the case in practical monetary policy. Instead, we assume that the

optimization is under commitment in a timeless perspective. Then the commitment is considered

having occurred some time in the past, and the initial value of the Lagrange multiplier satisfies

Ξ−1 = Ξ−1−1 (4.10)

where Ξ−1−1 denotes the Lagrange multiplier of the lower block of (4.2) for the determination of

−1−1 in the decision problem in period − 1. The dependence of the optimal policy projection
in period  on this Lagrange multiplier from the decision problem in the previous period makes the

optimal policy projection depend on previous projections and illustrates the history dependence

of optimal policy under commitment in a forward-looking model shown in Backus and Driffill [12]

and Currie and Levine [13] and especially examined and emphasized in Woodford [38].

Alternative methods to compute an initial Ξ−10 when no explicit optimization was done in

previous periods are discussed in appendix B.1. One method assumes that past policy has been

optimal. Another method assumes that past policy has been systematic but not necessarily optimal.

5. Results

Figure 5.1 shows four alternative policy projections for twelve different variables of interest, namely

the three target variables (4-quarter CPI inflation, the output gap, and the first-difference of the

instrument rate) and nine additional variables. The nine additional variables are 1-quarter CPI

inflation, 4-quarter domestic inflation, the instrument rate, the real exchange rate, the real interest

rate (the instrument rate less 1-quarter-ahead CPI inflation expectations), the neutral (real) interest

rate associated with the specific definition of potential output, the interest-rate gap between the real

interest rate and the neutral interest rate, output, and conditional potential output.22 The plots

show deviations from trend, where by trend we mean the (stochastic) steady state. All variables

are measured in percent or percent per year. The thin vertical line marks 2006:3, which is quarter 0

21 The appendix is availabale at www.princeton.edu/svensson.
22 Then neutral interest rate is defined in appendix C.5 as the real interest rate in a flexprice equilibrium and is

hence the interest rate associated with potential output. The interest-rate gap between the real interest rate and the
neutral interest rate is arguably the best single indicator of monetary-policy stance.
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Figure 5.1: Projections in 2006:3 for optimal policy for different output gaps and for the instrument

rule ( = 11 ∆ = 037)
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in the figure. The curves to the left of the thin vertical line shows actual or (for the neutral interest

rate and potential output) estimated history of data up to and including 2006:2, which is quarter

−1 in the figure. As in all cases below, the estimated history and the state in 2006:2 is estimated
with the simple instrument rule. Since the fit of the specification with the simple instrument rule

is best, we consider its estimate of the state in 2006:2 better.

The projections in figure 5.1, the curves to the right of the thin vertical line, should be thought

of as being considered by a policymaker in 2006:3, quarter 0 in the figure. The information available

in 2006:3, quarter 0, then includes data up to and including 2006:2, quarter −1. The projections
start from an estimated initial state (predetermined variables, 0|0) in 2006:3. This initial state is

projected from the given state of the economy in 2006:2 (−1|0 −1|0 −1|0) under the assumption

that policy follows the instrument rule in 2006:2 (and is expected to follow the policy rule forever).
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Hence, the estimated predetermined variables (0|0) are given and are the same for the three policy

alternatives considered in 2006:3, whereas the realization in 2006:3 of the forward-looking variables

(0) and the instrument rate (0) will depend on the policy alternatives.

The dashed curves show the policy projection when policy follows the instrument rule. The

monetary-policy shock in the instrument rule is set to zero, and the inflation target is assumed to be

constant and equal to 2% per year. We see that the instrument rule results in an inflation projection

for 4-quarter CPI inflation that remains at around 0.4 percent per year below the inflation target

during the 40 quarters plotted (the plots of inflation show deviations from the steady state which

equals the inflation target). The estimated simple instrument rule is obviously not successful in

keeping inflation close to the inflation target or even making it return to the inflation target in

the 40 quarters shown. For the instrument-rule projection, the panel for the output gap shows the

trend output gap, which is then identical to output, since the latter is measured as deviation from

trend. We see that the instrument-rule projection results in a relatively large positive output gap

that remains large for a long time.

The dash-dotted curves show the optimal policy projection when the trend output gap enters

the loss function. The weights in the loss function, as for all optimal projections in this figure,

are  = 11, and ∆ = 037, the estimated weights in table 3.1 when the non-policy parameters

are kept at their posterior mode obtained under the instrument rule. Furthermore, all the optimal

policy projections in this figure assume commitment in a timeless perspective when the initial

vector of Lagrange multipliers for the equations for the forward-looking variables (Ξ−1) have been

calculated under the assumption that policy during the inflation-targeting period has been optimal

(see appendix B.1.1). We see that this optimal policy projection reduces the size of the output gap

and initially leads to lower CPI inflation than the instrument-rule projection. This requires initially

tighter monetary policy than the instrument-rule projection, as demonstrated by an initially higher

nominal and real interest rate and a large positive initial interest-rate gap.

The solid curves to the right of the thin vertical line show the optimal policy projection when

the output gap in the loss function is the conditional output gap. Potential output plotted in the

figure is then conditional potential output, and the output gap plotted is the conditional output

gap. We see that this optimal projection successfully stabilizes 4-quarter CPI inflation around the

inflation target. It also successfully stabilizes the output gap from an initial high level, and we see

that the conditional output gap is much smaller than the trend output gap. This requires initially

more expansionary monetary policy, as shown by an initially lower nominal and real interest rate
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Figure 5.2: Projections in 2006:3 for optimal policy for different output gaps (initial Lagrange

multipliers zero) and for the instrument rule ( = 11 ∆ = 037)
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and an initially lower interest-rate gap.

The reason that both inflation and the conditional output gap can be successfully stabilized and

that the conditional output gap is much smaller than the large positive trend output gap is that

conditional potential output becomes high and substantially exceeds trend output (the bottom-

right panel of figure 5.1). The main reason that conditional potential output exceeds trend output

is that the stationary technology shock () is estimated to be quite high in 2006:2 (about 2%)

and also quite persistent ( = 0966, see table 3.1, the column “Policy rule”). Potential output

increases with the stationary technology shock, whereas trend output by definition is independent

of the stationary technology shock and only depends on the permanent technology shock ().

Thus, in this case it matters quite a bit for policy and the outcome for the economy whether the

loss function has the conditional or trend output gap as an argument. When the conditional output
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gap is the target variable, optimal policy takes into account that conditional potential output is

high because productivity is temporarily high and therefore allows more expansionary policy and

higher actual output than when the trend output gap is the target variable or when the instrument

rule is followed.

That the instrument rule is specified in terms of the trend output gap (rather than, for instance,

the conditional output gap) is also one of the main reasons why the instrument rule does not bring

inflation quickly back to target in this particular situation. When the stationary technology shock

is high and since it is very persistent, by using the instrument rule with the trend output gap

as an argument, the central bank creates an inefficient trade-off between output and inflation

stabilization, which results in inflation below the target and a positive trend output gap for a long

time from 2006:3. Had the rule instead been specified with a stronger inflation response or using a

response to the conditional output gap, this trade-off would be less pronounced.

The dotted curves in figure 5.1 show the optimal projection when the output gap in the loss

function is the unconditional output gap (computed using equation (C.7) with flexible prices from

1993:1 and onwards to form the state vector under flexible prices). Comparing with the optimal

projection for the conditional output gap in the loss function, we see that 4-quarter CPI inflation

and initially the output gap is stabilized better with the unconditional output gap in the loss

function. We see that the projections of conditional and unconditional potential output are in this

case initially similar (the bottom-right panel of the figure) but that conditional potential output

exceeds unconditional potential output after some ten quarters. The conditional and unconditional

potential output levels are computed from different predetermined variables (those in the actual

economy, and those in the hypothetical economy with flexible prices and wages in the past and

present, respectively), whereas the exogenous shocks are the same in the two cases (with the

exception of the markup shocks and the tax rates which are held constant when prices and wages

are flexible). Thus, unconditional potential output is independent of policy, whereas conditional

potential output depends on policy through the endogenous predetermined variables. Higher initial

output levels for the optimal policy with conditional output seem to lead to higher conditional

potential output later on.

Figure 5.1 shows the same projections as figure 5.2 except that the initial Lagrange multipliers

are set to zero. In this particular case, this does not change the projections much.

Figure 5.3 shows the same projections for a policy maker in 2007:4, using data up to 2007:3,

with estimated nonzero Lagrange multipliers as in figure 5.1. In this case, the stationary technology
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Figure 5.3: Projections in 2007:4 for optimal policy for different output gaps and for the instrument

rule ( = 11 ∆ = 037)
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shock is estimated to be very close to zero, in which case there is less difference between the

different potential output concepts and trend output, and consequently less difference between the

alternative optimal policy projections. However, the optimal policy projections are more effective in

stabilizing both 4-quarter CPI inflation around the target and the output gap than the instrument-

rule projection. The latter is characterized by much smaller movements in the instrument rate.

Figure 5.4 shows optimal policy projections for four cases with different loss-function parame-

ters, all with the conditional output gap and nonzero initial Lagrange multipliers calculated as in

figure 5.1. Projections for different loss-function parameters give policymakers information about

the tradeoffs between stabilization of inflation, stabilization of the output gap, and interest-rate

smoothing. We refer to the cases of loss-function parameters examined as (a) historical ( = 11,

∆ = 037) (solid curves), (b) strict inflation targeting ( = 0, ∆ = 001) (dotted curves), (c) no
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Figure 5.4: Optimal projections in 2006:3 for different loss functions (conditional output gap)
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instrument-rate smoothing ( = 11, ∆ = 001) (dashed-dotted curves), and (d) no output-gap

stabilization ( = 0, ∆ = 037).
23 First, we see that strict inflation targeting (b) is successful in

stabilizing CPI inflation but implies high variability of other variables. Second, the historical loss

function, with a higher weight on output-gap stabilization and instrument-rate smoothing, tolerates

some deviation of CPI inflation from target but stabilizes the output gap effectively. Third, we see

that the case of no instrument-rate smoothing (c) implies more instrument-rate variability than

the historical loss function but the projections of the other variables are not very different. Fourth,

no output-gap stabilization (d) results in more effective stabilization of CPI inflation, at the cost

of more variability in the output gap, but otherwise not very different projections than with the

historical loss function.

23 Setting ∆ = 0 rather than 001 leads to convergence problems in some cases.
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6. Conclusions

In this paper, we have shown how to construct operational optimal policy projections in the Riks-

bank’s model Ramses, a linear-quadratic open-economy DSGE model. By optimal policy projec-

tions we mean projections of the target variables and the instrument rate that minimize a loss

function under commitment in a timeless perspective. We have illustrated the use of different

output-gap concepts in the loss function and clarified the difference between output gaps relative

to conditional potential output, trend output, and unconditional potential output, where condi-

tional refers to the existing endogenous predetermined variables, such as the capital stock. When

productivity is temporarily high, conditional potential output exceeds trend output. Then optimal

policy projections in this case differ substantially depending on whether conditional or trend output

gaps enter the loss function.

Optimal policy under commitment in a timeless perspective also raises the question of what

initial set of Lagrange multipliers to use to represent the commitment in the first period of op-

timization. We have illustrated the difference in projections when these multipliers are either

zero (corresponding to the case of no previous commitment in the first period of optimization)

or computed under the assumption that past policy was optimal. In the cases we examine, the

optimal policy projections are not that much affected by whether the initial Lagrange multipliers

are nonzero or zero. We show in the appendix an alternative method to compute these multipliers

that does not presume that past policy was optimal. We discuss many other technical issues in

the appendix, including details of Ramses and how the algorithms of Klein [21] and Anderson and

Moore [10] and [11] can be combined for increased speed.

We have illustrated optimal policy projections only for a policymaker making policy decisions

in two particular quarters, 2006:3 and 2007:4, and hence only in two particular initial situations.

The results from these two quarters should be interpreted as illustrations and not general results.

However, with the tools we have demonstrated, we believe optimal policy projections in Ramses

and similar DSGE models can now be applied in real-time policy processes and provide policy-

makers with useful advice for their decisions–together with the usual input of detailed analysis

and estimation of the initial state of the economy, policy simulations with historical policy reaction

functions, other forecasting models, judgment, concerns about model uncertainty, and so forth.
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Appendix

A. Ramses in some detail

This appendix presents the loglinear approximation of the model. For a more detailed description

of the complete model and the derivation of the loglinear approximation, see ALLV [3].

There are four Phillips curves pertaining to Calvo-style price-setting firms in four sectors  ∈
{mcmi }: domestic (production) (), consumer-goods import (mc), investment-goods import
(mi), and export (),

(̂

 − b̄) =



1 + 
(̂



+1| − ̄ b̄) + 

1 + 
(̂


−1 − b̄) (A.1)

−  (1− ̄)

1 + 
b̄ + (1− )(1− )

1 + 
(cmc + ̂



 )

where a hat denotes the deviation of a loglinearized variable from a steady-state level (̂ ≡ 

for any variable , where  is the steady-state level); ̂

 ,  ∈ {mcmi }, denotes the deviation

in quarter  of the log of gross inflation in sector  from its steady state (̂

 ≡ 




 , where



 ≡ 


 


−1 is gross inflation, 


 is the price level in sector , and 

 is the steady-state inflation

in sector ); b̄ is a (perceived) exogenous CPI inflation target whose stochastic process is given by
b̄ = ̄ b̄−1 + ̄

where ̄ is i.i.d. and (0 2̄);  is a discount factor;  , ̄ , and  are parameters ( is the

Calvo price-stickiness parameter); cmc denotes the real marginal cost of firms in sector ; and ̂




denotes a time-varying markup in sector , assumed to be i.i.d. and 
³
0 2



´
. Firms in sector 

that do not optimize their price in a given quarter are assumed to index them to the previous

quarter’s inflation in the sector and the inflation target and to set the rate of change of the firm’s

individual price equal to

̂

−1 + (1− )b̄  (A.2)

so the parameter  is an indexation parameter. The firms’ marginal costs are defined as

cmc ≡ (̂ + ̂ − ̂) + b̄ + ̂

 − ̂

cmcmc ≡ ̂ ∗ + ̂ − ̂mc ≡ −cmc − ̂∗ − ̂mc 

cmcmi ≡ ̂ ∗ + ̂ − ̂mi ≡ −cmc − ̂∗ − ̂mi 

cmc ≡ ̂ 
 − ̂ − ̂ 

 ≡ cmc−1 + ̂ − ̂ −∆̂
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respectively; where  denotes the elasticity of output with respect to capital services; ̂ denotes

the stochastic growth rate in quarter  of a unit-root technology shock ( ≡ −1 where  is

the technology shock); ̂ denotes hours worked; ̂ denotes the capital-services flow, which may

differ from the capital stock, b̄, since we allow for varying capital utilization; b̄ denotes the real

wage; ̂

 denotes the effective nominal interest rate paid by the firms, reflecting the assumption

that a fraction  of the firms’ wage bill has to be financed in advance, and is given by

̂

 =



(− 1) + 1̂−1 +
(− 1)

(− 1) + 1 ̂

where ̂ is a shock to the fraction (throughout we set  = 1); ̂ ≡ ( − 1)1 is a stationary
technology shock; ̂ ∗ denotes the foreign price level; ̂

∗
 denotes foreign inflation (̂

∗
 = ∗ ∗,

where ∗ ≡  ∗  ∗−1 and ∗ is the foreign steady-state inflation); and ̂ is the nominal exchange

rate (domestic currency per unit of foreign currency) so ∆̂ is the rate of currency depreciation

(∆ ≡  − −1 for any variable ). Furthermore, ̂
∗
 , ̂

mc
 , ̂mi , and ̂


 are relative prices

defined as

̂∗ ≡ ̂ 
 − ̂ ∗ ≡ ̂∗−1 + ̂ − ̂∗  

̂mc ≡ ̂mc − ̂ 
 ≡ ̂mc−1 + ̂mc − ̂ 

̂mi ≡ ̂mi − ̂ 
 ≡ ̂mi−1 + ̂mi − ̂ 

̂

 ≡ ̂ 

 − ̂ − ̂ ∗ ≡ cmc + ̂∗ 

The stochastic processes for ̂, ̂, and ̂∗ are specified below.

Since all real variables grow with the non-stationary technology shock , we have to divide all

quantities with the trend level of technology to make them stationary. We denote the resulting

stationary variables by lower-case letters, that is,  =  ̃ =  (we denote investment

by ̃ to avoid confusion with the monetary-policy instrument ), +1 = , ̄+1 = ̄+1,

 =().

Households are Calvo-style wage setters. Households that are not allowed to reoptimize their

nominal wage in the current quarter are assumed to index their nominal wage to the previous-

quarter’s rate of CPI inflation, the inflation target, and productivity growth and set the rate of

increase of their individual nominal wage as

̂

−1 + (1− )b̄ + ̂

where  is a wage-indexation parameter, ̂

 denotes CPI inflation and satisfies

̂ = (1− )(
)−(1−)̂ + (

mc)−(1−)̂mc 
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where  is the (standardized) weight of imported goods in the CPI, and  and mc are the

steady-state relative price between the CPI and the domestic good and the imported consumer

good, respectively. The resulting real-wage equation can be written

0 =  b̄−1 + [ − 
¡
1 + 2

¢
] b̄ +  b̄+1|

− 

³
̂ − b̄´+ 

³
̂+1 − ̄ b̄´

+ 
¡
̂−1 − b̄¢− 

¡
̂ − ̄ b̄¢

+(1− )̂ − (1− )̂

− (1− )


1− 
̂

 − (1− )



1 + 
̂ − (1− )̂



 

where

 ≡  − (1− )

(1− ) (1− )


̂ denotes the marginal utility of income, ̂

 denotes a labor income tax, ̂


 denotes a payroll tax

assumed to be paid by the households, and ̂


 denotes a labor supply shock to be specified below.

The additional parameters are the Calvo wage-stickiness parameter , the steady-state pay-roll

tax , the steady-state labor income tax , the labor supply elasticity , and the wage markup

.

The households’ consumption preferences are subject to internal habit formation, which yields

the following Euler equation for consumption expenditures,

0 = −  ̂+1| +
¡
2 + 2

¢
̂ −  ̂−1 + 

³
̂ − ̂+1|

´
+ ( − ) ( − ) ̂ +

 

1 +  
( − ) ( − ) ̂ 

+ ( − ) ( − ) ̂ − ( − )
³
 ̂



 − ̂


+1|
´


where  denotes the habit persistence parameter,  denotes the steady-state growth rate, ̂ denotes

consumption, ̂  denotes a consumption tax,

̂ ≡ ̂ 
 − ̂ 

 ≡ ̂−1 + ̂ − ̂

denotes the relative price between consumption and domestically produced goods, and ̂


 denotes

a consumption preference shock (specified below).

The household’s first-order conditions with respect to investment ̃, the physical capital stock

̄+1, and the utilization rate

̂ ≡ ̂ − b̄
26



are, in their loglinearized forms, given by

̂ + Υ̂ − ̂ − 2̃
00
h³b̃ − b̃−1´− 

³b̃+1| − b̃´+ ̂ − ̂+1|
i
= 0 (A.3)

̂+̂+1|−̂+1|−
(1− )


̂+1|+̂−

 − (1− )


̂+1|+



1− 
 − (1− )


̂+1| = 0

̂ =
1


̂ −

1





(1− )
̂  (A.4)

where  is the price of capital goods in terms of domestic goods,
24 Υ̂ = (Υ−1)1 is a stationary

investment-specific technology shock specified below, ̃00 is a parameter of the cost-of-investment

function,  is the depreciation rate, and ̂ denotes the loglinearized expression for the real rental

rate of capital and satisfies

̂ = ̂ + b̄ + ̂

 + ̂ − ̂

The loglinearized law of motion for capital is given by

b̄+1 = (1− )
1



b̄ − (1− )
1


̂ +

∙
1− (1− )

1



¸
Υ̂ +

∙
1− (1− )

1



¸b̃ (A.5)

The output gap satisfies,

̂ = ̂ + ̂ − ̂ +  (1− ) ̂ (A.6)

where  is the steady-state markup.

By combining the first-order conditions for the holdings of domestic and foreign bonds, we

obtain an uncovered interest parity (UIP) condition. The UIP condition is modified to account for

a negative correlation between the risk premium and expected exchange rate changes following the

empirical evidence in, for example, Duarte and Stockman [15] (for details about this modification,

see ALLV [4]), ³
1− ̃

´
E∆̂+1 − ̃∆̂ −

³
̂ − ̂∗

´
− ̃̂ +

b̃
 = 0 (A.7)

where ̂ denotes the domestic nominal interest rate, ̂
∗
 denotes the foreign nominal interest rate,

̂ denotes the net foreign asset position,
b̃
 denotes a shock to the risk premium, and ̃ and ̃ are

parameters. To ensure a well-defined steady state in the model, we assume that there is a premium

on foreign bond holdings depending on the net foreign asset position, which explains the presence

of the net foreign asset position. The real exchange rate, ̃ (we denote the real exchange rate by

̃ to avoid confusion with the vector of forward-looking variables ),
25 satisfies

b̃ ≡ ̂ + ̂ ∗ − ̂ 
 ≡ b̃−1 + ̂∗ − ̂ .

24 The price of capital goods is denoted 0 in ALLV [4].
25 In ALLV [4], ̃ denotes technology-scaled export, but we do not need any notation for that variable here.
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The loglinearized version of the first-order conditions for money balances+1 and cash holdings

 are, respectively,

−̂ + ̂+1| − ̂+1| +
³
− 

´
̂ − ̂+1| +



1− 
( − ) ̂+1| = 0

̂ =
1



∙
̂


 +


1− 
̂ − ̂ −



− 1̂−1

¸
 (A.8)

where  is steady-state money growth and ̂


 is a cash preference shock, to be specified below.

The following aggregate resource constraint must hold in equilibrium

(1− )
³

´ 



³
̂ + ̂




´
+ (1− )

³

´ ̃



³b̃ + ̂



´
+




̂ +

∗



³
̂∗ −  ̂

∗
 + b̃∗´

= [̂ + (̂ − ̂) + (1− ) ̂]−
³
1− 

´

̄



1


(̂ − b̄);

where , , and  are elasticities of substitution between domestic and imported consumer goods,

domestic and imported investment goods, and domestic and foreign goods (in foreign consumption),

respectively; , ̃, , ∗, , and ̄ are steady-state levels of consumption, investment, domestic output,

foreign output, government expenditure, and the capital stock, respectively (when scaled with ,

the technology level); ̂ is government expenditure, and

̂ ≡ ̂ 
 − ̂ 

 ≡ ̂−1 + ̂ − ̂

is the relative price between investment and domestically produced goods.

We also need to relate money growth  to real balances (where real balances ̄+1 ≡ (+1

 )

are scaled by the technology shock  and +1 denote nominal balances) and domestic inflation,

 ≡
+1


≡ ̄+1




̄−1 
−1
≡ ̄+1




̄


Loglinearizing, we have b̄+1 = b̄ − ̂ + ̂ − ̂  (A.9)

To clear the loan market, the demand for liquidity from the firms (which are financing their

wage bills) must equal the supplied deposits of the households plus the monetary injection by the

central bank:

̄
³
̂ + b̄ + ̂

´
=

̄



³
̂ + b̄ − ̂ − ̂

´
− ̂ (A.10)

where ̄, ̄ and  are steady-state levels of real wages, real balances, and cash holdings (when

scaled by ),  is the steady-state level of hours worked, and  is the steady-state inflation of

domestic goods.
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The evolution of net foreign assets at the aggregate level satisfies

̂ = − ∗cmc − 
∗
 ̂

∗
 + ∗̂∗ + ∗b̃∗ + ( + ̃) ̂




−
∙
− (1− )

³

´−(1−)

̂mc + ̂

¸
(A.11)

−̃
∙
− (1− )

³

´−(1−)

̂mi + b̃¸+ 


̂−1;

where  and  are steady-state levels of consumption and investment of imported goods (when

scaled by ),  is the steady-state nominal interest-rate level, ̂
∗
 denotes foreign output, and

b̃∗ is
a stationary shock that measures the degree of asymmetry in the technological level between the

domestic economy and the foreign economy.

The exogenous shocks of the model are AR(1). Those not explained above are given by the

representation

̂ =  ̂−1 + 

where  is i.i.d. and
¡
0 2

¢
, for  ∈ { ,         Υ ̃ ̄


  ̃

∗
 } and  ∈ {mcmi }.

Furthermore, as discussed in ALLV [4], for estimation purposes it is convenient to rescale the markup

shock ̂


  = {mcmi } in the Phillips curves so as to include the coefficient (1−)(1−)
(1+)

in

the markup shock. Then the new coefficient on them in the Phillips curve is unity. Similarly, we

rescale the investment specific technology shock Υ̂, the labor supply shock 

 , and the consumption

preference shock  , so that these shocks enter in an additive fashion as well.
26

The government collects tax revenues resulting from taxes on capital income  , labor income



 , consumption   , and the pay-roll 


 , and spends resources on government consumption, .

The resulting fiscal surplus/deficit plus the seigniorage are assumed to be transferred back to the

households in a lump sum fashion. Consequently, there is no government debt. The fiscal policy

variables are assumed to be exogenously given by an identified VAR model with two lags and

an uninformative prior. Let   ≡ (̂  ̂  ̂   ̂  ̂)0, where ̂ denotes HP-detrended government
expenditures. The fiscal policy VAR(2)-model is given by

Θ0  = Θ1 −1 +Θ2 −2 +  (A.12)

where  ∼  (0  ) and Θ
−1
0  ∼  (0Σ ).

26 Although this is not of any major importance for the baseline estimation of the model in ALLV [4], it is
important when carrying out the sensitivity analysis there because the effective prior standard deviation of the
shocks changes with the value of the nominal and real friction parameters. Smets and Wouters [27] adopt the same
strategy. Therefore, to obtain the size of the four truly fundamental markup shocks, the estimated standard deviations

reported in table 31 should be divided by their respective scaling parameter (for instance,
(1−)(1−)
(1+)

in the case

of the domestic markup shock).
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Foreign prices ∗ , (HP-detrended) output ̂∗ , and the interest rate ∗ are exogenously given by

an identified VAR model with four lags using an uninformative prior.27 Given our assumption of

equal substitution elasticities in foreign consumption and investment, these three variables suffice

to describe the foreign economy in our model setup. Let ∗
 ≡ (∗  ̂∗  ∗ )0, where ∗ and ∗ are

quarterly foreign inflation and interest rates, and ̂∗ is foreign output. The foreign economy is

modeled as a VAR(4) model,

Φ0
∗
 = Φ1

∗
−1 +Φ2

∗
−2 +Φ3

∗
−3 +Φ4

∗
−4 + ∗∗ (A.13)

where ∗ ∼  (0 ∗) and Φ
−1
0 ∗∗ ∼  (0Σ∗). When estimating the VAR, we assume and

do not reject that Φ0 in (A.13) has the following structure

Φ0 ≡
⎡⎣ 1 0 0

0 1 0

−∗0 −∗0 1

⎤⎦ 
The model can then be written on the form (2.1), where we specify the predetermined variables

 = (
ex0
 

pd0
 )0, the forward-looking variables , the policy instrument , and the shock vector

 as follows (the number of the element in each vector is also listed):

ex
 ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b 1b−1 2

̂ 3

̂−1 4

̂ 5

̂


 6

̂


 7

̂


 8

̂


 9

̂
mc

 10

̂
mi

 11b̃
 12

Υ̂ 13b̃∗ 14b̃∗−1 15

̂ 16

̂ 17b̄ 18b̄−1 19

̂ 20

̂

 21

̂  22

̂ 23

̂ 24

̂−1 25

̂

−1 26

̂ −1 27

̂−1 28

̂−1 29

̂∗ 30

̂∗ 31

̂∗ 32

̂∗−1 33

̂∗−1 34

̂∗−1 35

̂∗−2 36

̂∗−2 37

̂∗−2 38

̂∗−3 39

̂∗−3 40

̂∗−3 41

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

 
pd
 ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b̄ 1 42b̄ 2 43

̂−1 3 44

̂−1 4 45

̂mc−1 5 46

̂mi−1 6 47

̂−1 7 48

̂−1 8 49b̄−1 9 50

̂−1 10 51b̃−1 11 52

̂−1 12 53

̂0 −1 13 54

∆̂−1 14 55

̂−1 15 56

̂−1 16 57

̂−1 17 58

̂−1 18 59

̂−1 19 60

̂mc−1 20 61

̂mi−1 21 62

̂∗−1 22 63b̃−1 23 64cmc−1 24 65b̄−1 25 66

̂−1 26 67

̂−2 27 68

̂mc−2 28 69

̂−3 29 70

̂mc−3 30 71

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

 (A.14)

27 The reason why we include foreign output HP-detrended and not in growth rates in the VAR is that the foreign
output gap enters the log-linearized model (for instance, in the aggregate resource constraint). This also enables
identification of the asymmetric technology shock.
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 ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

̂ 1

̂mc 2

̂mi 3

̂ 4

̂ 5b̄ 6

̂ 7b̃ 8

̂ 9

̂0  10

∆̂ 11

̂ 12

̂ 13

̂ 14

̂ 15

̂ 16

̂mc 17

̂mi 18

̂∗ 19b̃ 20cmc 21b̄+1 22b̄+1 23

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

 def ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

̂ 1

̂ 2

̂

 3

̂ 4cmc 5cmcmc 6cmcmi 7

̂
cpi
 8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
  ≡ ̂ (A.15)

 ≡

⎡⎢⎢⎣
       mc mi 

1 2 3 4 5 6 7 8 9 

̃ Υ ̃∗   ̄ 0 0∗
10 11 12 13 14 15 16 : 20 21 : 23

⎤⎥⎥⎦
0

 (A.16)

The variables in def are only functions of the variables in  and can therefore be expressed in

terms of  to reduce the number of forward-looking variables, . See the technical appendix [1]

for the detailed specification of the matrices , , , , and ̄.

B. Optimal projections in some detail

As shown in Svensson [31], the ( +  + ) first-order conditions for minimizing (2.6) under

commitment subject to (2.1) can be written

̄0
∙
+1|
Ξ

¸
= ̄

⎡⎣ 




⎤⎦+ 1

̄ 0
∙


Ξ−1

¸
 (B.1)

where the elements of the -vector +1 are the Lagrange multipliers for the upper block of (2.1)

(the dating of +1 emphasizes that this is a restriction that applies in period + 1), the elements

of the -vector Ξ are the Lagrange multipliers for the lower block of (2.1) (the dating of Ξ

emphasizes that this is restriction that applies in period ), and the matrices ̄, ̄ , and ̄ are

defined by

̄ ≡ [ ] ̄ ≡ 0 ̄ ≡
∙
 0 0

0  0

¸
 (B.2)
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The first-order conditions can be combined with the  + model equations (2.1) to get a system

of 2( + ) +  difference equations for  ≥ 0,

∙
̄ 0

0 ̄0

¸⎡⎢⎢⎢⎢⎣
+1

+1|
+1|
+1|
Ξ

⎤⎥⎥⎥⎥⎦ =
∙

̄ 0

̄ 1

̄ 0

¸⎡⎢⎢⎢⎢⎣





Ξ−1

⎤⎥⎥⎥⎥⎦+
⎡⎢⎢⎣



0

0

0

⎤⎥⎥⎦ +1 (B.3)

Here,  and Ξ−1 are predetermined variables ( +  in total), and , , and  are non-

predetermined variables ( +  +  in total). This system can be rewritten as∙
̃111+1 + ̃122+1|
̃211+1| + ̃222+1|

¸
=

∙
̃11 ̃12
̃21 ̃22

¸ ∙
1
2

¸
+

∙
̃

0

¸
+1 (B.4)

where 1 ≡ ( 0
Ξ

0
−1)

0 ≡ ̃ 0
 is the vector of predetermined variables and 2 ≡ (0 0 0)0 ≡ (̃0 0)0

is the vector of non-predetermined variables. The matrices are defined as

̃11 ≡
∙
 0

0 022

¸
 ̃12 ≡

∙
0 0 0

0 0 012

¸
 ̃21 ≡

⎡⎣ 0 0

0 021
0 02

⎤⎦  ̃22 ≡
⎡⎣  0 0

0 0 011
0 0 01

⎤⎦ 

̃11 ≡
∙

11 0

̄
1

 0

¸
 ̃12 ≡

∙
12 1 0

̄ ̄ 0

¸
 ̃21 ≡

⎡⎣ 21 0

̄ 0

̄ 0

⎤⎦ 
̃22 ≡

⎡⎣ 22 2 0

̄ ̄
1



̄ ̄ 0

⎤⎦  ̃ ≡
∙


0

¸


The solution to (B.4) can be written

2 ≡
∙
̃


¸
= 21 ≡

∙




¸
̃ (B.5)

1+1 ≡ ̃+1 = 1 + ̃−1
11 ̃+1 ≡̃ + ̃−1

11 ̃+1 (B.6)

for  ≥ 0, where 10 ≡ ̃0 ≡ ( 0
0Ξ

0
−1)

0 is given. We note that our assumption that 22 is

nonsingular implies that ̃11 is nonsingular.

B.1. Determination of the initial Lagrange multiplier, Ξ−1, when there is no explicit

previous optimization

We discuss two possible methods of computing the initial Lagrange multiplier, Ξ−1. The second

method seems less restrictive.
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B.1.1. Assuming optimal policy in the past

Note that (4.8) and (B.5) imply that, in real time, the Lagrange multiplier Ξ satisfies

Ξ =Ξ| +ΞΞΞ−1−1 =
X

=0

(ΞΞ)
Ξ− |− 

if the commitment occurred from scratch in period − , so Ξ−−1− = 0. Here is partitioned

conformably with  and Ξ−1 so

 ≡
∙
 Ξ

Ξ ΞΞ

¸


Recall that that  will depend on the weight matrix  in the period loss function and hence vary

with the assumed or estimated loss function.

Given this, one possible initial value for Ξ−1 = Ξ−1−1 is

Ξ−1−1 =
X

=0

(ΞΞ)
Ξ−1− |−1−  (B.7)

This treats estimated realized − ( = 0 1   ) as resulting from optimal policy under com-

mitment. The lag  may be chosen such that (ΞΞ)
Ξ is sufficiently small.

B.1.2. Assuming any (systematic) policy in the past

Another possible initial value for Ξ−1 follows from the following reasoning. The first-order con-

dition (B.1) can be written

̄0
∙
+1|
Ξ

¸
=
1


̄ 0
∙


Ξ−1

¸
+ ̄ (B.8)

where  ≡ ( 0
 

0
 

0
)
0 ≡ ( 0

 ̃
0
). It should be noted that we have added an equation determining

the interest rate using an instrument rule  =  (
0
 , 

0
)
0 such that Ξ contains an additional

element. The matrices ̄, ̄ , and ̄ are therefore defined as

̄ ≡
∙
 

 −1
¸
 ̄ ≡ 0 ̄ ≡

⎡⎣  0 0

0  0

0 0 0

⎤⎦ 
Note that we can interpret (B.8) as an equation for the endogenous stochastic process for  and

Ξ−1 for a given stochastic process for . This can be rewritten as

− 1


∙
̄ 0
11 ̄ 0

12

̄ 0
21 ̄ 0

22

¸ ∙

Ξ−1

¸
+

∙
̄011 ̄012
̄021 ̄022

¸ ∙
+1|
Ξ

¸
= ̄
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where ̄ 0 and ̄0 are partitioned conformably with  and Ξ−1 and ̄ 0
 and ̄0 denote the

submatrices (̄ 0) and (̄0) of ̄ 0 and ̄0 (not the transpose (̄)
0 of the submatrix ̄ of ̄,

etc.). To write this on AIM form we need to use the correct timing of the variables. Reordering

implies

−1

∙
−1
Ξ−1

¸
+0

∙

Ξ

¸
+1

∙
+1|
Ξ+1|

¸
= ̄

where

−1 ≡ − 1


∙
0 ̄ 0

12

0 ̄ 0
22

¸
 0 ≡

∙ − 1

̄ 0
11 ̄012

− 1

̄ 0
21 ̄022

¸
 1 ≡

∙
̄011 0

̄021 0

¸


As noted in appendix D.2 and equation (D.18), the solution to this equation can be written∙

Ξ

¸
= ̄

∙
−1
Ξ−1

¸
+

∞X
=0

̄ Φ̄+| (B.9)

Here, ̄ is returned by the AIM algorithm, and Φ and ̄ depend on ̄, 0, and 1 according to

(D.16) and (D.19). Furthermore, +| denotes rational expectations in period  of the realization

in period  +  of the stochastic process for {+}∞=0. Thus, for given realizations of − and
corresponding expectations {−+|−}∞=0 for  = 0 1   , and by setting Ξ−−1 = 0, we can
solve for {0− Ξ0−1−}=0 and use the resulting Ξ−1 as the initial value for Ξ−1.

Solving the first-order conditions for a given stochastic process can be interpreted as finding the

shadow prices of the model equations (2.1) without necessarily assuming optimal policy. That is,

we only assume that  follows some known stochastic process, not necessarily a stochastic process

corresponding to optimal policy. Under the assumption of optimal policy, there is no additional

information in the realizations of − and − ; hence only realizations of the predetermined

variables are used in (B.7). When policy is not necessarily optimal, also realizations of − and

− are used in calculating Ξ−1. (However, it should be noted that these are still functions of the

predetermined variables.) This method seems less restrictive than assuming past optimal policy.

Note that we still assume that policy is systematic during periods −  , −  + 1, ..., − 1, and
that it follows a stochastic process that is understood by the private sector and allows a rational-

expectations equilibrium. Furthermore, the shift to optimal policy in period  is not anticipated in

previous periods.

It follows from equations (4.7) and (4.8) that

+| =
∙



IR

¸
+| =

∙


IR

¸
(IR)



where IR and IR are the reduced-form (solution) matrices obtained under the instrument rule.
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Equation (B.9) can then be rewritten as∙
−
Ξ−

¸
= ̄

∙
−−1
Ξ−−1

¸
+−   = 0 1  

where

 =

∞X
=0

̄ Φ̄

∙


IR

¸
(IR)

 

B.2. Projections with an arbitrary instrument rule

With a constant (that is, time-invariant) arbitrary instrument rule, the instrument rate satisfies

 = [ ]

∙




¸
for  ≥ 0, where the  × ( + ) matrix [ ] is a given (linear) instrument rule and

partitioned conformably with  and .
28 If  ≡ 0, the instrument rule is an explicit instrument

rule; if  6= 0, the instrument rule is an implicit instrument rule. In the latter case, the instrument
rule is actually an equilibrium condition, in the sense that in a real-time analogue the instrument

rate in period  and the forward-looking variables in period  would be simultaneously determined.

The instrument rule that is estimated for Ramses is of the form (see appendix A for the notation)

 = −1 + (1− )
hb̄ + 

¡
̂−1 − b̄¢+ ̂−1 + b̃−1i (B.10)

+∆

¡
̂ − ̂−1

¢
+ ∆ (̂ − ̂−1) + 

where  ≡ ̂ (the notation for the short nominal interest rate in Ramses). Since ̂

 and ̂ are

forward-looking variables, this is an implicit instrument rule.

An arbitrary more general (linear) policy rule ( ) can be written as

+1| ++1| =  +  +  (B.11)

where the  × ( + ) matrix  ≡ [ ] is partitioned conformably with  and  and the

 × ( +  + ) matrix  ≡ [  ] is partitioned conformably with , , and . This

general policy rules includes explicit, implicit, and forecast-based instrument rules (in the latter

the instrument rate depends on expectations of future forward-looking variables, +1|) as well

as targeting rules (conditions on current or expected future target variables). When this general

policy rule is an instrument rule, we require the  ×  matrix  to be nonsingular, so (B.11)

determines  for given , , +1|, and +1|.

28 For projections with arbitrary time-varying policy rules, see Laséen, and Svensson [19].
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The general policy rule can be added to the model equations (2.1) to form the new system to

be solved. With the notation ̃ ≡ (0 0)0, the new system can be written∙
+1

̃̃+1|

¸
= ̃

∙


̃

¸
+

∙


0(+)×

¸
+1

 = 

∙


̃

¸
  = ̄

∙


̃

¸


where

̃ ≡
∙

 0

 

¸
 ̃ ≡

⎡⎣ 11 12 1
21 22 2
  

⎤⎦ 
where ̃ is partitioned conformably with  and  and ̃ is partitioned conformably with , ,

and . The corresponding projection model can then be written∙
++1

̃̃++1

¸
= ̃

∙
+

̃+

¸


+ = 

∙
+

̃+

¸
 + = ̄

∙
+

̃+

¸
for  ≥ 0, where  = |.

Then, (under the usual assumption that the policy rule gives rise to the standard saddlepoint

property for the system’s eigenvalues) there exist matrices  and  such that the resulting equi-

librium projection satisfies

++1 =+

̃+ ≡
∙
+
+

¸
= + ≡

∙



¸
+

for  ≥ 0, where the matrices  and  depend on ̃ and ̃, and thereby on , , , , and  .29

29 Equivalently, the resulting equilibrium projection satisfy
̌++1
̌++1
̌++1


= ̄


̌+
̌+
̌+


for  ≥ 0, where

̌ = |
̌
̌


=


̄

̄

  ̌−1−1
̌−1−1
̌−1−1


+

Φ
Φ


(| − ̌−1)
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C. Flexprice equilibrium and alternative concepts of potential output

Under the assumption of flexible prices and wages and an additional equation that determines

nominal variables (inflation, the price level, the exchange rate, or some other nominal variable),

the flexprice model can be written

∙
+1

+1|

¸
= 

⎡⎣ 




⎤⎦+
⎡⎣ 

0×
0×

⎤⎦ +1 (C.1)

with the same variables , , and  and the same i.i.d. shocks  as in the sticky-price model but

with the new (+)× matrix and (++)×(++)matrix  . There are hence

 extra equations added to the lower block of the equations (the block of equations determining the

forward-looking variables), as many equations as the number of policy instruments. The discussion

here is restricted to the case  = 1 (as is Ramses), so only one equation needs to be added, such

as

̂
cpi
 = 0 or ̂ = 0 (C.2)

In the latter case,

 ≡
∙



01×

¸
  ≡

⎡⎣ 11 12 1
21 22 2
01× 1 0

⎤⎦ 
where 1 here denotes a row -vector with the first element equal to unity and the other elements

equal to zero (reflecting that domestic inflation, ̂ , by (A.15) is the first forward-looking variable).

The matrix  has been modified so there is no effect on the endogenous variables of the four

time-varying markups ̂ ,  ∈ {mcmi }, since these time-varying distortions would introduce
undesirable variation in the difference between the (loglinearized) efficient and flexprice output (see

more discussion in section C.6). This is achieved by setting the corresponding elements in 11

and 21 equal to zero. With the same argument one may also want to eliminate the effect on the

endogenous variables of time-varying tax rates.

Let ̃

 ≡ ( 0   0 )0 and 


 denote the realizations of the nonpredetermined and predetermined

variables, respectively, in a flexprice equilibrium for  ≥ 0, where 0 is some period in the past with

given predetermined variables 0 from which we compute the flexprice equilibrium. The flexprice

equilibrium is the solution to the system of difference equations (C.1) for  ≥ 0. It can be written

̃

 ≡

"








#
=  


 ≡

"








#



 



+1 = 


 + +1
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for  ≥ 0, where 
 and  are matrices returned by the Klein [21] algorithm and 


0
= 0 . In

particular, by (A.15), element number four of 

 (and ̃


 ) is ̂


 , the output level in the flexprice

equilibrium. We can therefore write flexprice output in period  ≥ 0 as

̂

 = 


4·


 

where the row vector 

4· is the fourth row of the matrix 

 .

C.1. Unconditional potential output

Consider now a hypothetical flexprice equilibrium that has lasted forever, the unconditional flexprice

equilibrium. The hypothetical realization of the predetermined variables in period , denoted

;−∞,

then satisfies



;−∞ =


−1;−∞ +  =

∞X
=0

( )−

and hence depends on the realizations of the shocks , −1, ... The corresponding flexprice output

is

̂

;−∞ ≡ 


4·


;−∞ = 


4·
∞X
=0

( )− (C.3)

We refer to this output level as unconditional potential output. It hence corresponds to the

output level in a hypothetical economy that has always had flexible prices and wages but is subject

to the same shocks as the actual economy. It hence has a different capital stock and different

realizations of the endogenous both predetermined and nonpredetermined variables compared to

the actual economy. It corresponds to the natural rate of output consistent with the definition of

the natural rate of interest in Neiss and Nelson [22].

C.2. Conditional potential output

Consider also the hypothetical situation in which prices and wages in the actual economy unex-

pectedly become flexible in the current period  and are then expected to remain flexible forever.

The corresponding flexprice output in this economy is denoted ̂

; and given by

̂

; ≡ 


4· (C.4)

We refer to this output level as conditional potential output (conditional on prices and wages becom-

ing flexible in the same period and therefore conditional on the existing predetermined variables,

including the capital stock). It corresponds to the definition of the natural rate of output presented

in Woodford [38, section 5.3.4].
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We then realize that we can define conditional- potential output, where  ∈ {0 1 } refers to
prices and wages unexpectedly becoming flexible and expected to remain flexible forever in period

− , that is,  periods before . This concept of potential output is denoted ̂


;−| and is given

by

̂

;− ≡ 


4·


;− ≡ 


4·(



−1;− + ) ≡ 


4·[(

 )− +
−1X
=0

( )−] (C.5)

Conditional- potential output hence depends on the state of the economy (the predetermined

variables) in period  −  and the shocks from  −  + 1 to . Conditional-0 potential output is

obviously the same as conditional potential output. Unconditional potential output is the limit of

conditional- potential output when  goes to infinity,

̂

;−∞ = lim

→∞
̂

;−

C.3. Projections of potential output

Consider now projections in period  of these alternative concepts of potential output. The projec-

tion in period  of unconditional potential output, {̂+ ;−∞}∞=0 (where the first subindex,  +  ,

refers to the future period for which potential output is projected; the second subindex, −∞, in-
dicates that unconditional potential output is considered; and the third subindex, , refers to the

period in which the projection is made and for which information is available), is related to the

projection of the unconditional flexprice predetermined variables, {
+ ;−∞}∞=0, and is given by

̂

+ ;−∞ ≡ 


4·


+ ;−∞ ≡ 


4·(

 )


;−∞| (C.6)

for  ≥ 0, where 

;−∞| denotes the estimated realization of the unconditional flexprice predeter-

mined variables in period  conditional on information available in period .

Here, 


;−∞| can be estimated from




;−∞| = (
 )−00| +

−1−0X
=0

( )−| (C.7)

where the unconditional flexprice equilibrium is approximated by a flexprice equilibrium that starts

in a particular period 0  , 0| denotes the estimate conditional on information available in

period  of the predetermined variables in period 0, and −| denotes the estimate conditional in

information available in period  of the realization of the shock in period − .
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The projection in period  of conditional potential output (that is, conditional-0 potential out-

put), {̂+ ;+}∞=0, is given by
̂

+ ;+ ≡ 


4·+ (C.8)

for  ≥ 0. Note that the projection of conditional potential output in period + then refers to the

flexprice output for a flexprice equilibrium that starts in the future period +  , not in the current

period period . In the latter case, it would instead be the projection of conditional- potential

output in period +  . Therefore, the projection of the predetermined variables in period +  of

the actual economy, +, enters in (C.8), not the projection of the predetermined variables in

period +  of the flexprice equilibrium starting in period , 

+ ;.

The projection in period  of conditional- potential output, {̂+ ;+−}∞=0, is related to the
projection of the conditional- flexprice predetermined variables, {

+ ;+−}∞=0, and is given
by

̂

+ ;+− ≡ 


4·


+ ;+− (C.9)

for  ≥ 0. That is, the projection of the conditional- predetermined variables in period + enters

in (C.9), the predetermined variables in the flexprice equilibrium that starts  periods earlier, in

period +  − . Furthermore, this projection is given by



+ ;+− ≡ ( )+− +

−1X
=

( )+−|

where the summation term is zero when  ≥ . Thus, the projection in period  of the realization

of conditional- potential output in period  +  , ̂

+ ;+−, depends on the projection of the

predetermined variables in period +  −  of the actual economy (with sticky prices and wages),

+−, and when    also on the estimated shocks −| for  = 0, 1, ..., −  −1. (For   ,

+−| = 0).

C.4. Output gaps

We can then consider several concepts of output gaps: We have the trend output gap, the gap

between actual output and trend output, ̂ (recall that ̂ is the deviation from trend). For each

concept of potential output, we have a corresponding concept of output gap: The unconditional

output gap,

̂ − 

;−∞ ≡ ̂ − 


4·


;−∞;
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the conditional output gap,

̂ − 

; ≡ ̂ − 


4·;

and the conditional - output gap,

̂ − 

;− ≡ ̂ − 


4·


;−

The projections of the different output gaps are then defined in analogy with the projections of

the different potential outputs.

C.5. Neutral interest rates and interest-rate gaps

For each concept of potential output, we have a corresponding concept of (short) neutral nominal

interest rate. If the flexprice equilibrium is defined for a constant CPI inflation, the neutral nominal

interest rate is also the neutral real (CPI) interest rate. For each neutral interest rate we can define

a corresponding interest-rate gap as the difference between the actual interest rate and the neutral

interest rate. The interest-rate gaps can be seen as measures of monetary-policy stance.

C.6. Efficient and potential output

As discussed in Svensson [32], efficient output can be defined as the welfare-maximizing output level.

Efficient output can be conditional (conditional on current predetermined variables), conditional-

(conditional on the predetermined variables  periods ago and the shocks realized after that period),

or unconditional. It could be constrained-efficient output (that is, second-best output), depending

on what distortions are taken as given.

For each concept of efficient output, a corresponding concept of potential output can be con-

structed from a welfare-optimizing point view, that is, from the point of view of the suitable output

target in a quadratic loss function corresponding to flexible inflation targeting. Svensson [32] sug-

gests choosing the (detrended) output target at a constant distance from efficient output such that

its unconditional mean equals the unconditional mean of (detrended) actual output. (This potential

output can be called constant-distance potential output.) This should correspond to a concept of

flexprice output for an economy where some distortions that affect the distance between flexprice

output and efficient output are held constant, such as the price and wage markups and tax rates.

The resulting constant-distance output gap would then have a welfare basis.

For each concept of constant-distance potential output, one can then define a constant-distance

neutral interest rate and a corresponding interest-rate gap. The potential-output concepts discussed

41



above are defined for constant price and wage markups and tax rates.

D. The Klein and AIM algorithms

The state-space form (2.1) is convenient for deriving the first-order conditions for optimal policy

as in Söderlind [28] and Svensson [31] and the resulting state-space form of the combined model

and first-order conditions are suitable for the application of the Klein [21] algorithm. However, the

Klein algorithm appears to be slower than the alternative so-called AIM algorithm of Anderson

and Moore [10], especially for large systems (see Anderson [9]). This may make it more practical,

especially for estimation and Monte-Carlo simulations, to use the AIM algorithm to solve the system

of difference equations. We therefore clarify the relation between the inputs and outputs of the

two algorithms and how they can be converted to each other. Anderson [9] provides a comparison

between AIM and other algorithms, including Klein’s.

D.1. The Klein algorithm

Consider a system of stochastic difference equations written in the state-space form∙
1+1

2+1|

¸
= ̃ +

∙
̃

0

¸
+1  = 0 1  (D.1)

where  ≡ (01 02)0 is an -vector, 1 is an 1-vector of predetermined variables, 2 is an 2-

vector of non-predetermined variables,  = 1 + 2, 2+1| ≡ E2+1, and 10 is given. All linear

stochastic difference equations can be written in this form, by the appropriate addition of new

variables. In particular, for the model (2.1) with an arbitrary instrument rule of the form,

 = 

∙




¸
 (D.2)

the system of difference equations can be written as (D.1) with 1 ≡ , 2 ≡ , and ̃ ≡ + .

The upper block of (D.1) can be written

1+1 = ̃111 + ̃122 + ̃+1 (D.3)

where the matrix ̃ is partitioned conformably with 1 and 2 as

̃ ≡
∙
̃11 ̃12
̃21 ̃22

¸


The system (D.3) determines 1+1 in period  + 1 for given  and +1. We note that the one-

period-ahead prediction error in 1+1, the innovation in 1+1, is given by

1+1 − 1+1| = ̃+1 (D.4)
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and is exogenous. Having exogenous one-period-ahead prediction errors is a general definition of

predetermined variables (Klein [21]).

The lower block of (D.1) can be written

2 = ̃−122 (2+1| − ̃211) (D.5)

The system (D.5) determines 2 given 1 and expectations 2+1|. The matrix ̃22 is assumed to

be nonsingular.

Take expectations of (D.1) and consider the system

̃+1| = ̃

for  ≥ 0 with 10 given, where in this case ̃ satisfies

̃ ≡
∙
̃11 ̃12

̃21 ̃22

¸
=

∙
 0

0 

¸
(D.6)

when partitioned conformably with 1 and 2. In the more general case examined below, ̃

need not have the upper left submatrix be the identity matrix, and the upper right and lower left

submatrices need not be zero matrices, as long as the upper left submatrix ̃11 is nonsingular.

Consider the generalized eigenvalues of pair of matrices (̃ ̃).30 Under the assumption that there

are exactly 2 generalized eigenvalues with modulus larger than unity, the system (D.1) has a

unique solution for 20 and  ( ≥ 1) for given 10.

The Klein [21] algorithm uses the matrices ̃ and ̃ and the scalar 1 (the number of prede-

termined variables) as inputs and returns the 1 × 1 matrix  and the 2 × 1 matrix  such

that, given that the one-period-ahead prediction errors of 1 are given by (D.4), the solution to

this system can be written

2 = 1 (D.7)

1+1 = 1 + ̃+1 (D.8)

for  ≥ 0. The matrices  and  depend on the matrices ̃ and ̃ but not on the matrix ̃. They

satisfy the identity

(̃ − ̃)

∙




¸
≡ 0 (D.9)

which can be used to test the solution.

30 The generalized eigenvalues of the matrices (̃) are the complex numbers  that satisfy ̃ =  for some

 6= 0, that is, the complex numbers that satisfy det(̃ −) = 0.
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The one-period-prediction errors for 2+1 satisfy

2+1 − 2+1| =  (1+1 − 1+1|) = ̃+1.

Since the matrix  is endogenous and part of the solution, the one-period-prediction errors for 2

are endogenous. Having endogenous one-period-ahead prediction errors is a general definition of

non-predetermined variables (Klein [21]).

We can also consider a system in the more general state-space form∙
̃111+1 + ̃122+1|
̃211+1| + ̃222+1|

¸
= ̃ +

∙
̃

0

¸
+1 (D.10)

Note that the upper block has 1+1 and 2+1| on the left side, where as the lower block has 1+1|

and 2+1|. Such a system results from combining the model equations and the first-order equations

from optimization under commitment in a stochastic linear-quadratic system with forward-looking

variables, (B.4), (see Söderlind [28] and Svensson [30] and [31]). Such a system also results from

the model (2.1) with an arbitrary instrument rule of the form

 = 

∙




¸
+ 2+1| (D.11)

When 2 6= 0, this rule is sometimes called a “forecast-based” instrument rule; some problems with
such instrument rules are discussed in Svensson [29]. For (2.1) with a forecast-based instrument

rule (D.11), we have 1 ≡ , 2 ≡ , ̃ ≡  +  , ̃11 = , ̃12 = −12, ̃21 = 0, and

̃22 =  −22 (where  ≡ [01 02]
0 is partitioned conformably with  and ).

In the general form (D.10), the submatrices ̃11 and ̃22 of ̃ and ̃ are assumed to be

nonsingular, although ̃11 need not be the identity matrix. The matrices ̃12 and ̃21 need not

be zero. The upper block of (D.10) is an equation system that determines 1+1 in period +1 for

given , 2+1|, and +1. Therefore the system must be possible to solve for 1+1, which requires

that ̃11 is nonsingular. Hence, the one-period-ahead prediction errors for 1+1 satisfy

̃11(1+1 − 1+1|) = ̃+1

so they remain exogenous and can be written

1+1 − 1+1| = ̃−1
11 ̃+1.

The lower block of (D.10) is an equation system determining 2 in period  for given 1 and

2+1|. This requires that ̃22 is nonsingular.
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The Klein algorithm applied to the general system (D.10) uses ̃, ̃, and 1 as inputs and

returns  and  . The solution for 20 and  ( ≥ 1) for given 10 is given by (D.7) and

1+1 =1 + ̃−1
11 ̃+1 (D.12)

for  ≥ 0. The identity (D.9) is also satisfied for the more general case.
The one-period-prediction errors for 2+1 satisfy

2+1 − 2+1| =  (1+1 − 1+1|) = ̃−1
11 ̃+1

and are endogenous.

We show below that the system (D.10) can always be written in the form (D.1) by the intro-

duction of an additional forward-looking variable,  ≡ 2+1|, and some reshuffling.

D.2. The AIM algorithm

Anderson [8] and [9] specify the Anderson and Moore [10] and [11] algorithm (also called the AIM

algorithm). It solves the deterministic problem

X
=−

+ = Ψ ( ≥ 0) (D.13)

for the endogenous -vectors  for  ≥ 0, where  for  ≥ 0 is an exogenous -vector,  for

 = − − +1   are ×  matrices, Ψ is an × matrix,  ≥ 0,  ≥ 1, and  is given for

 = − − + 1 −1.
The solution from the AIM algorithm is simplest for the special case of  =  = 1.31 All linear

systems can be reduced to that case by introducing variables with longer leads or lags as separate

variables. Let us consider the related system of stochastic difference equations,

−1−1 +0 +1+1| = Ψ ( ≥ 0) (D.14)

where +1| ≡ E+1, the -vector  is an i.i.d. shock in period  with mean zero and covariance
matrix  , and −1 is given. The system (D.14) is completely described by the  ×  matrices

−1, 0, and 1, the  ×  matrix Ψ, and the given −1.

For the special case of  =  = 1, the AIM algorithm uses the matrices −1, 0, and 1 as

inputs and returns the  ×  matrix ̄, called the convergent autoregressive matrix, such that

31 The AIM Matlab program available at www.federalreserve.gov/pubs/oss/oss4/aimindex.html requires  ≥ 1 and
 ≥ 1.
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the solution to (D.14) can be written

 = ̄−1 +ΦΨ (D.15)

where

Φ ≡ (0 +1̄)
−1 (D.16)

We can see that Φ must satisfy (D.16) by substituting +1| = ̄ into (D.14) and solving for :

−1−1 +0 +1̄ = Ψ

−1−1 + (0 +1̄) = Ψ

 = − (0 +1̄)
−1−1−1 + (0 +1̄)

−1Ψ

The matrices ̄ and Φ depend on −1, 0, and 1 but not on Ψ, consistent with certainty

equivalence of the system. The matrix ̄ satisfies the identify

−1 +0̄ +1̄
2 ≡ 0 (D.17)

which can be used to test the solution.

For the case when the right side of (D.14) is Ψ and  is an arbitrary exogenous stochastic

process, the solution can be written

 = ̄−1 +
∞X
=0

̄ ΦΨ+| (D.18)

where32

̄ ≡ −Φ1 (D.19)

We can show that the solution can be written on the form (D.18) by assuming that the solution

can be written

 = ̄−1 + (D.20)

+1| = ̄ ++1| (D.21)

and substituting (D.21) into (D.14) with the right side equal to Ψ,

−1−1 +0 +1(̄ ++1|) = Ψ

32 Note that there seems to be a typo in the expression for  in Anderson [9, p. 5].
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Solving for  gives

 = − (0 +1̄)
−1−1−1 + (0 +1̄)

−1Ψ − (0 +1̄)
−11+1|

Identification with (D.20) and using (D.16) give that ̄ satisfies

̄ ≡ −Φ−1

(which by (D.16) is just the identity (D.17)) and that  satisfies the stochastic difference equation

 = ΦΨ + ̄+1| (D.22)

where ̄ satisfies (D.19). Assuming that the eigenvalues of ̄ have modulus less than unity and

that +| for  ≥ 0 is sufficiently bounded, we can solve (D.22) forward to get

 =

∞X
=0

̄ ΦΨ+|

which confirms (D.18).

If  follows an exogenous autoregressive process,

 = −1 + 

it is arguably easiest to incorporate it into the predetermined variables 1 and expand the matrices

−1, 0, and 1 accordingly.

D.3. Relations between Klein and AIM inputs and outputs

In order to transform a system in the state-space form (D.1) to the AIM form (D.14), the system

(D.1) can be written as

1 − ̃111−1 − ̃122−1 = ̃ (D.23)

2+1| − ̃211 − ̃222 = 0 (D.24)

for  ≥ 0, with −1 and 0 given (hence 10 is also given by (D.23) for  = 0). Then we can identify
the vector  and the matrices −1, 0, 1, and Ψ directly from (D.23) and (D.24) as

 ≡
∙
1
2

¸
 −1 ≡

∙ − ̃11 − ̃12
0 0

¸
 0 ≡

∙
 0

− ̃21 − ̃22

¸
 (D.25)

1 ≡
∙
0 0

0 

¸
 Ψ ≡

∙
̃

0

¸
 (D.26)
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The above identification of −1, 0, and 1 exploits the property (D.6) of ̃ that the upper left

submatrix is the identity matrix and the upper right and lower left submatrices are zero.

Given (D.7) and (D.23), we realize that the convergent autoregressive matrix ̄ will satisfy

̄ ≡
∙

̃11 ̃12
̃11 ̃12

¸


Furthermore, the matrix Φ will in this case satisfy

Φ ≡
∙

 0

 Φ22

¸
 (D.27)

Thus, we can extract  from the lower left submatrix Φ21 of Φ,

 ≡ Φ21

The submatrix Φ22 corresponds to a hypothetical i.i.d. shock on the right side of (D.24) and

is irrelevant under the assumption that any such shocks are zero since they have already been

incorporated among the predetermined variables.

In order to extract the Klein output matrix  , partition ̄ as

̄ ≡ £ ̄·1 ̄·2
¤


where ̄·1 is the submatrix consisting of the 1 first columns of ̄. Since by (D.7) all  that are

solutions to the system satisfy

[ − ] = 0

for  ≥ 0, we have

̄ + ̄·2 [ − ] ≡ £ ̄·1 + ̄·2 0
¤ ≡ ∙  0

 0

¸


Then  can be extracted from the upper left submatrix of the matrix specified on the left side of

this identity.

The more general system (D.10) can be written in a form suitable for conversion to the AIM form

by lagging the first block one period and introducing the new vector nonpredetermined variables

 ≡ 2+1|. Then the equation system can be written as

̃111 − ̃111−1 − ̃122−1 + ̃12−1 = ̃ (D.28)

̃211+1| + ̃222+1| − ̃211 − ̃222 = 0 (D.29)

2+1| −  = 0 (D.30)

48



This then allows us to identify  ≡ (01 02)0 and the matrices −1, 0, 1, and Ψ as

 ≡
⎡⎣ 1

2


⎤⎦  −1 ≡
⎡⎣ − ̃11 − ̃12 ̃12

0 0 0

0 0 0

⎤⎦  0 ≡
⎡⎣ ̃11 0 0

− ̃21 − ̃22 0

0 0 − 

⎤⎦  (D.31)

1 ≡
⎡⎣ 0 0 0

̃21 ̃22 0

0  0

⎤⎦  Ψ ≡
⎡⎣ ̃

0

0

⎤⎦  (D.32)

where 1 = 1 and 2 = (
0
2 

0
)
0.

Given (D.7) and (D.8), we have

2+1| = 1+1| = 1

From (D.28) we then realize that the convergent autoregressive matrix ̄ satisfies

̄ ≡
⎡⎣ ̃−1

11 ̃11 ̃−1
11 ̃12 −̃−1

11 ̃12

̃−1
11 ̃11 ̃−1

11 ̃12 −̃−1
11 ̃12

̃−1
11 ̃11 ̃−1

11 ̃12 −̃−1
11 ̃12

⎤⎦  (D.33)

and that the matrix Φ satisfies

Φ ≡
⎡⎣ ̃−1

11 0 0

̃−1
11 Φ22 Φ23

̃−1
11 Φ32 Φ33

⎤⎦  (D.34)

The four lower right submatrices of Φ correspond to hypothetical i.i.d. shocks on the right side

of (D.29) and (D.30) and are irrelevant under our assumptions that such i.i.d. shocks are zero. It

follows that the Klein output matrix  can be extracted from the middle left submatrix Φ21 of Φ

according to

 = Φ21̃11

In order to extract the Klein output matrix  , partition ̄ according to

̄ ≡ £ ̄·1 ̄·2 ̄·3
¤


where ̄·1 is the submatrix consisting of the 1 first columns of ̄, ̄·2 is the submatrix consisting

of the next 2 columns, and ̄·3 is the submatrix consisting of the last 2 columns. Since  that

are solutions to the system will satisfy∙
 − 0

 0 −
¸
 = 0

it follows that

̄ +
£
̄·2 ̄·3

¤ ∙  − 0

 0 −
¸
≡ £ ̄·1 + ̄·2 + ̄·3 0 0

¤ ≡
⎡⎣  0 0

 0 0

2 0 0

⎤⎦ 
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Then  can be extracted from the upper left submatrix of the matrix specified on the left side of

the identity.33

We can transform the general system (D.10) to the simpler system (D.1) by multiplying (D.28)

by ̃−1
11 and leading it one period, resulting in (D.35), substituting the expectation of the right side

of (D.35) for 1+1| in (D.29), and rewriting the system as

1+1 = ̂111 + ̂122 + ̂13 + ̂+1 (D.35)

̃222+1| = ̂211 + ̂222 + ̂23 (D.36)

2+1| =  (D.37)

where

̂11 ≡ ̃−1
11 ̃11 ̂12 ≡ ̃−1

11 ̃12 ̂12 ≡ −̃−1
11 ̃12

̂21 ≡ ̃21 − ̃21̂11 ̂22 ≡ ̃22 − ̃21̂12 ̂23 ≡ −̃21̂13 ̂ = ̃−1
11 ̃

A system in the AIM form (D.14), where the  ≡ (01 
0
2)
0 and 1 and 2 are predeter-

mined and nonpredetermined variables, respectively, can always be written in the state-space form

(D.10) with the non-predetermined variables 2 ≡ 2 and the appropriate definition of additional

predetermined variables 1, for instance,

1 ≡
⎡⎣ 1
Ψ2
−1

⎤⎦  (D.38)

where Ψ is partitioned conformably with 1 and 2,

Ψ ≡
∙
Ψ1
Ψ2

¸
and the matrix ̃ is given by

̃ ≡
⎡⎣ Ψ1Ψ2
0

⎤⎦ 
(The details of the corresponding matrices ̃ and ̃ are not reported here.)

D.4. The Klein algorithm with an arbitrary exogenous stochastic process

Note that, for the case when the i.i.d. shock +1 is replaced by the arbitrary exogenous stochastic

process , conversion of Klein input and output to AIM output, including ̄, Φ, and ̄ , allows

33 Note that this way of extracting  and  seems more general than that suggested in Anderson [9]. The latter
requires that  is invertible, which is generally not the case.
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the convenient representation of the solution as (D.18). This approach to the solution for this

case seems simpler and cleaner than the derivation of the corresponding solution in Klein [21] and

Svensson [30].

In order to sort this out, consider the Klein system of stochastic difference equations,∙
̃111+1 + ̃122+1|
̃211+1| + ̃222+1|

¸
=

∙
̃11 ̃12
̃21 ̃22

¸
 +

∙
̃1+1
̃2

¸
 (D.39)

for  ≥ 0, where  is an arbitrary stochastic -vector process,  = (01 02)0, 1 is an 1-vector

of predetermined variables, 2 is an 2-vector of nonpredetermined variables, and 10 and 0 are

given. It follows that the prediction errors for 1 satisfy

1 − 1|−1 = ̃−1
11 ̃1( − |−1) (D.40)

We can rewrite this to a form suitable for AIM,

̃111 − ̃111−1 − ̃122−1 + ̃12−1 = ̃1

̃211+1| + ̃222+1| − ̃211 − ̃222 = ̃2 (D.41)

2+1| −  = 0

We can then identify the (1 + 22)-vector  = (01 
0
2 

0
)
0, and the (1 + 22) × (1 + 22)

matrices −1, 0, and 1 as in (D.31) and (D.32). However, the (1+22)×  matrix Ψ is now

given by

Ψ ≡
⎡⎣ ̃1

̃2
0

⎤⎦ 
AIM output consists of the matrices (1 + 22) × (1 + 22) matrices ̄, Φ, and ̄ , where ̄

satisfies (D.33) and Φ and ̄ satisfy (D.16) and (D.19). We then have the solution

 = ̄−1 +
∞X
=0

̄ ΦΨ+|

This solution is an alternative way to reach the solution for arbitrary exogenous disturbances derived

in Klein [21] and Svensson [30].
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